Construction and Enhanced Efficiency of Bi2MoO6/ZnO Compo-Sites for Visible-Light-Driven Photocatalytic Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Methods
2.2.1. Synthesis of Hierarchical Flower-like Bi2MoO6 Hollow Spheres (BMO)
2.2.2. Synthesis of ZnO
2.2.3. Synthesis of Sphere-like Bi2MoO6/ZnO(BZO)
2.3. Characterization
2.4. Measurement of Photocatalytic Activity
3. Results and Discussion
3.1. Subsection
3.2. BET Surface Area Analysis
3.3. SEM and TEM Analyses
3.4. Fluorescence Spectroscopy
3.5. UV–Vis DRS Analyses
3.6. XPS Analyses
3.7. Photocatalytic Performance and Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karkmaz, M.; Puzenat, E.; Guillard, C.; Herrmann, J. Photocatalytic degradation of the alimentary azo dye amaranth. Appl. Catal. B Environ. 2004, 51, 183–194. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef] [PubMed]
- Forgacs, E.; Cserhati, T.; Oros, G. Removal of synthetic dyes from wastewaters: A review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Rueda-Marquez, J.; Levchuk, I.; Ibañez, P.F.; Sillanpää, M. A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod. 2020, 258, 120694. [Google Scholar] [CrossRef]
- McFarland, E.; Metiu, H. Catalysis by doped oxides. Chem. Rev. 2013, 113, 4391–4427. [Google Scholar] [CrossRef]
- Xu, X.; Randorn, C.; Efstathiou, P.; Irvine, J.T. A red metallic oxide photocatalyst. Nat. Mater. 2012, 11, 595–598. [Google Scholar] [CrossRef]
- Long, J.; Wang, S.; Chang, H.; Zhao, B.; Liu, B.; Zhou, Y.; Wei, W.; Wang, X.; Huang, L.; Huang, W. Bi2MoO6 nanobelts for crystal facet-enhanced photocatalysis. Small 2014, 10, 2791–2795. [Google Scholar] [CrossRef]
- Saeed, R.M.Y.; Bano, Z.; Sun, J.; Wang, F.; Ullah, N.; Wang, Q. CuS-functionalized cellulose based aerogel as biocatalyst for removal of organic dye. J. Appl. Polym. Sci. 2019, 136, 47404. [Google Scholar] [CrossRef]
- Honda, Y.; Watanabe, M.; Hagiwara, H.; Ida, S.; Ishihara, T. Inorganic/whole-cell biohybrid photocatalyst for highly efficient hydrogen production from water. Appl. Catal. B Environ. 2017, 210, 400–406. [Google Scholar] [CrossRef]
- Orbeci, C.; Totu, M.; Tanczos, S.K.; Vasile, E.; Nechifor, A.C. Preparation and properties of a photocatalyst with TiO2 nanoparticles. Optoelectron. Adv. Mater.-Rapid Commun. 2013, 7, 822–827. [Google Scholar]
- Pastor, A.; Balbuena, J.; Cruz-Yusta, M.; Pavlovic, I.; Sánchez, L. ZnO on rice husk: A sustainable photocatalyst for urban air purification. Chem. Eng. J. 2019, 368, 659–667. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Q.; Deng, Y.; Zhu, C.; Wang, D.; Li, Z. Synthesis of Nano TiO2-Fe2O3 Photocatalyst and photocatalytic degradation properties on oxytetracycline hydrochloride. In Proceedings of the 2017 7th International Conference on Manufacturing Science and Engineering (ICMSE 2017), Zhuhai, China, 11–12 March 2017; Atlantis Press: Paris, France, 2017; pp. 216–219. [Google Scholar]
- Hou, Y.; Laursen, A.B.; Zhang, J.; Zhang, G.; Zhu, Y.; Wang, X.; Dahl, S.; Chorkendorff, I. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem. 2013, 125, 3709–3713. [Google Scholar] [CrossRef]
- Robertson, P.K.; Robertson, J.M.; Bahnemann, D.W. Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis. J. Hazard. Mater. 2012, 211–212, 161–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiskia, A.; Mylonas, A.; Papaconstantinou, E. Comparison of the photoredox properties of polyoxometallates and semiconducting particles. Chem. Soc. Rev. 2001, 30, 62–69. [Google Scholar] [CrossRef]
- Yi, J.; She, X.; Song, Y.; Xu, H.; Zhang, P.; Mo, Z.; Liu, L.; Du, D.; Li, H. A silver on 2D white- C3N4 support photocatalyst for mechanistic insights: Synergetic utilization of plasmonic effect for solar hydrogen evolution. RSC Adv. 2016, 6, 112420–112428. [Google Scholar] [CrossRef]
- Hu, S.; Zhu, M. Ultrathin Two-Dimensional Semiconductors for Photocatalysis in Energy and Environment Applications. ChemCatChem 2019, 11, 6147–6165. [Google Scholar] [CrossRef]
- Daneshvar, N.; Salari, D.; Khataee, A.R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A Chem. 2004, 162, 317–322. [Google Scholar] [CrossRef]
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef]
- Liu, W.; Wang, M.; Xu, C.; Chen, S.; Fu, X. Ag3PO4/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B. Mater. Res. Bull. 2013, 48, 106–113. [Google Scholar] [CrossRef]
- Shi, W.; Li, M.; Huang, X.; Ren, H.; Guo, F.; Tang, Y.; Lu, C. Construction of CuBi2O4/Bi2MoO6 p-n heterojunction with nanosheets-on-microrods structure for improved photocatalytic activity towards broad-spectrum antibiotics degradation. Chem. Eng. J. 2020, 394, 125009. [Google Scholar] [CrossRef]
- Xue, X.; Chen, R.; Yan, C.; Hu, Y.; Zhang, W.; Yang, S.; Ma, L.; Zhu, G.; Jin, Z. Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale 2019, 11, 10439–10445. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, S.; Lai, C.; Zeng, G.; Zhang, M.; Zhou, M.; Huang, D.; Qin, L.; Liu, X.; Li, Z.; et al. Unravelling the interfacial charge migration pathway at atomic level in 2D/2D interfacial Schottky heterojunction for visible-light-driven molecular oxygen activation. Appl. Catal. B Environ. 2020, 266, 118650. [Google Scholar] [CrossRef]
- Xu, Y.S.; Zhang, W.D. Monodispersed Ag3PO4 nanocrystals loaded on the surface of spherical Bi2MoO6 with enhanced photocatalytic performance. Dalton Trans. 2013, 42, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Xu, J.; Wang, S.; Zhang, Y.; He, Y.; Li, X. Photodegradation of sulfamethazine in an aqueous solution by a bismuth molybdate photocatalyst. Catal. Sci. Technol. 2013, 3, 1603–1611. [Google Scholar] [CrossRef]
- Schuh, K.; Kleist, W.; Hoj, M.; Trouillet, V.; Jensen, A.D.; Grunwaldt, J.D. One-step synthesis of bismuth molybdate catalysts via flame spray pyrolysis for the selective oxidation of propylene to acrolein. Chem. Commun. 2014, 50, 15404–15406. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, W.; Sun, Y.; Yu, J.; Zhang, Y.; Wang, H.; Dong, F.; Wu, Z. Bi Cocatalyst/Bi2MoO6 Microspheres Nanohybrid with SPR-Promoted Visible-Light Photocatalysis. J. Phys. Chem. C 2016, 120, 11889–11898. [Google Scholar] [CrossRef]
- Ke, J.; Duan, X.; Luo, S.; Zhang, H.; Sun, H.; Liu, J.; Tade, M.; Wang, S. UV-assisted construction of 3D hierarchical rGO/Bi2MoO6 composites for enhanced photocatalytic water oxidation. Chem. Eng. J. 2017, 313, 1447–1453. [Google Scholar] [CrossRef]
- Li, J. The preparation of bismuth molybdate-based nano material for photocatalysis. Ph.D. Thesis, East China Normal University, Shanghai, China, 2017. [Google Scholar]
- Tian, G.; Chen, Y.; Zhou, W.; Pan, K.; Dong, Y.; Tian, C.; Fu, H. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6hollow spheres as high performance visible-light driven photocatalysts. J. Mater. Chem. 2011, 21, 887–892. [Google Scholar] [CrossRef]
- Kasinathan, M.; Thiripuranthagan, S.; Sivakumar, A. Fabrication of sphere-like Bi2MoO6/ZnO composite catalyst with strong photocatalytic behavior for the detoxification of harmful organic dyes. Opt. Mater. 2020, 109, 110218. [Google Scholar] [CrossRef]
- Jia, Y.; Ma, Y.; Lin, Y.; Tang, J.; Shi, W. Fabrication of Bi(2)MoO6/ZnO Heterojunction Nanosheet Array with High Photoelectrochemical Property. J. Nanosci. Nanotechnol. 2019, 19, 4007–4014. [Google Scholar] [CrossRef]
- Tian, X.; Qu, S.; Wang, B.; Xu, Z. Hydrothermal synthesis and photocatalytic property of Bi2MoO6/ZnO composite material. Res. Chem. Intermed. 2014, 41, 7273–7283. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Xu, Z.; Lin, S.-Y. Constructing heterojunction photocatalyst with nanosized interface via a facile strategy for achieving enhanced photocatalytic activity. J. Mater. Sci. Mater. Electron. 2017, 28, 13814–13820. [Google Scholar] [CrossRef]
- de Fátima Giarola, J.; Borges, K.B.; Tarley, C.R.T.; de Oliveira, F.M.; Ribeiro, E.S.; Pereira, A.C. Development and application of graphite-SiO2/Al2O3/Nb2O5-methylene blue (GRP-SiAlNb-MB) composite for electrochemical determination of dopamine. Arab. J. Chem. 2017, 10, 430–438. [Google Scholar] [CrossRef] [Green Version]
- Rong, S.; Zou, L.; Li, Y.; Guan, Y.; Zhang, Z.; Zhang, Y.; Chang, D. An ultrasensitive disposable sandwich-configuration electrochemical immunosensor based on OMC@ AuNPs composites and AuPt-MB for alpha-fetoprotein detection. Bioelectrochemistry 2021, 141, 107846. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, J.J.; Burger, C.F. Methylene blue for acute septic cardiomyopathy in a burned patient. J. Burn Care Res. 2016, 37, e287–e291. [Google Scholar] [CrossRef]
- DeLey Cox, V.E.; Hartog, M.A.; Pueblo, E.; Racine, M.; Jennings, L.; Tressler, J.; McCranor, B.J. Methylene blue and monosodium glutamate improve neurologic signs after fluoroacetate poisoning. Ann. N. Y. Acad. Sci. 2020, 1479, 196–209. [Google Scholar] [CrossRef]
- Polom, W.; Markuszewski, M.; Rho, Y.S.; Matuszewski, M. Usage of invisible near infrared light (NIR) fluorescence with indocyanine green (ICG) and methylene blue (MB) in urological oncology. Part 1. Cent. Eur. J. Urol. 2014, 67, 142. [Google Scholar] [CrossRef] [Green Version]
- Coulter, J.B.; Birnie, D.P. Assessing Tauc Plot Slope Quantification: ZnO Thin Films as a Model System. Phys. Status Solidi (B) 2018, 255, 1700393. [Google Scholar] [CrossRef]
- Yu, J.C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L. Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chem. Mater. 2002, 14, 3808–3816. [Google Scholar] [CrossRef]
- Li, B.; Liu, T.; Wang, Y.; Wang, Z. ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. J. Colloid Interface Sci. 2012, 377, 114–121. [Google Scholar] [CrossRef]
- Zeng, J.; Li, Z.; Peng, H.; Zheng, X. Core-shell Sm2O3@ZnO nano-heterostructure for the visible light driven photocatalytic performance. Colloids Surf. A Physicochem. Eng. Asp. 2019, 560, 244–251. [Google Scholar] [CrossRef]
- Jonjana, S.; Phuruangrat, A.; Thongtem, T.; Thongtem, S. Synthesis, analysis and photocatalysis of AgBr/Bi2MoO6 nanocomposites. Mater. Lett. 2016, 172, 11–14. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, F.; Zhan, S.; Zhu, Z.; He, Q. Mechanisms on the enhanced sterilization performance of fluorocarbon resin composite coatings modified by g-C3N4/Bi2MoO6 under the visible-light. J. Photochem. Photobiol. A Chem. 2018, 350, 10–16. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity. Appl. Catal. B Environ. 2019, 250, 313–324. [Google Scholar] [CrossRef]
- Jo, W.-K.; Lee, J.Y.; Selvam, N.C.S. Synthesis of MoS2 nanosheets loaded ZnO–g-C3N4 nanocomposites for enhanced photocatalytic applications. Chem. Eng. J. 2016, 289, 306–318. [Google Scholar] [CrossRef]
- Zhou, T.; Xu, D.; Lu, M.; Wang, P.; Zhu, J. MOF derived Bi2MoO6/TiO2 nanohybrids: Enhanced photocatalytic activity for Rhodamine B degradation under sunlike irradiation. Res. Chem. Intermed. 2018, 44, 6431–6444. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, C.; Li, X.; Xin, J.; Tao, R.; Liu, Y. Assembling n-Bi2MoO6 Nanosheets on Electrospun p-CuAl2O4 Hollow Nanofibers: Enhanced Photocatalytic Activity Based on Highly Efficient Charge Separation and Transfer. ACS Sustain. Chem. Eng. 2018, 6, 10714–10723. [Google Scholar] [CrossRef]
- Xie, D.; Chang, L.; Wang, F.; Du, G.; Xu, B. Ultrasound-assisted synthesis of macro-/mesoporous ZnO double-pyramids and their optical and photocatalytic properties. J. Alloys Compd. 2012, 545, 176–181. [Google Scholar] [CrossRef]
- Lakhera, S.K.; Neppolian, B. Role of molecular oxygen on the synthesis of Ni(OH)2/TiO2 photocatalysts and its effect on solar hydrogen production activity. Int. J. Hydrogen Energy 2020, 45, 7627–7640. [Google Scholar] [CrossRef]
- He, G.Y.; Huang, J.; Liu, W.F.; Wang, X.; Chen, H.Q.; Sun, X.Q. ZnO–Bi2O3/graphene oxide photocatalyst with high photocatalytic performance under visible light. Mater. Technol. 2012, 27, 278–283. [Google Scholar] [CrossRef]
- Li, H.; Hu, T.; Zhang, R.; Liu, J.; Hou, W. Preparation of solid-state Z-scheme Bi 2 MoO 6 /MO (M Cu, Co 3/4, or Ni) heterojunctions with internal electric field-improved performance in photocatalysis. Appl. Catal. B Environ. 2016, 188, 313–323. [Google Scholar] [CrossRef]
- Subha, N.; Mahalakshmi, M.; Myilsamy, M.; Neppolian, B.; Murugesan, V. The influence of n-type and p-type dopants on the interfacial charge transfer and the band structure of Bi2MoO6 to enhance solar H2 production. J. Photochem. Photobiol. A Chem. 2019, 379, 150–158. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, J.; Ma, T.; Wang, P.; Cui, C.; Ma, D. Synthesis of C@Bi2MoO6 nanocomposites with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 2017, 403, 141–150. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Z. Plasmonic ternary Ag–rGO–Bi2MoO6 composites with enhanced visible light-driven photocatalytic activity. J. Catal. 2016, 344, 616–630. [Google Scholar] [CrossRef]
- Phuruangrat, A.; Putdum, S.; Dumrongrojthanath, P.; Ekthammathat, N.; Thongtem, S.; Thongtem, T. Enhanced properties for visible-light-driven photocatalysis of Ag nanoparticle modified Bi2MoO6 nanoplates. Mater. Sci. Semicond. Process. 2015, 34, 175–181. [Google Scholar] [CrossRef]
- Li, N.; Zhang, J.; Tian, Y.; Zhao, J.; Zhang, J.; Zuo, W. Precisely controlled fabrication of magnetic 3D γ-Fe2O3@ZnO core-shell photocatalyst with enhanced activity: Ciprofloxacin degradation and mechanism insight. Chem. Eng. J. 2017, 308, 377–385. [Google Scholar] [CrossRef]
- Guo, F.; Shi, W.; Guan, W.; Huang, H.; Liu, Y. Carbon dots/g-C3N4/ZnO nanocomposite as efficient visible-light driven photocatalyst for tetracycline total degradation. Sep. Purif. Technol. 2017, 173, 295–303. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, Q.; Wei, M.; Guo, E.; Yao, L.; Sun, K. ZnO/gamma-Bi2MoO6 heterostructured nanotubes: Electrospinning fabrication and highly enhanced photoelectrocatalytic properties under visible-light irradiation. J. Sol-Gel Sci. Technol. 2018, 85, 84–92. [Google Scholar] [CrossRef]
- Lamba, R.; Umar, A.; Mehta, S.K.; Kansal, S.K. Sb2O3–ZnO nanospindles: A potential material for photocatalytic and sensing applications. Ceram. Int. 2015, 41, 5429–5438. [Google Scholar] [CrossRef]
- de Mimérand, Y.D.R.; Li, K.; Zhou, C.; Jin, X.; Hu, X.; Chen, Y.; Guo, J. Functional Supported ZnO/Bi2MoO6 Heterojunction Photocatalysts with 3D-Printed Fractal Polymer Substrates and Produced by Innovative Plasma-Based Immobilization Methods. ACS Appl. Mater. Interfaces 2020, 12, 43138–43151. [Google Scholar] [CrossRef]
- Chankhanittha, T.; Nanan, S. Visible-light-driven photocatalytic degradation of ofloxacin (OFL) antibiotic and Rhodamine B (RhB) dye by solvothermally grown ZnO/Bi2MoO6 heterojunction. J. Colloid Interface Sci. 2021, 582, 412–427. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Liu, W.; Hu, X.R.; Li, Z.L. Magnetically separable Ag/AgBr/NiFe2O4 composite as a highly efficient visible light plasmonic photocatalyst. J. Phys. Chem. Solids 2017, 109, 1–8. [Google Scholar] [CrossRef]
- Al-Hetlani, E.; Amin, M.O.; Madkour, M. Detachable photocatalysts of anatase TiO2 nanoparticles: Annulling surface charge for immediate photocatalyst separation. Appl. Surf. Sci. 2017, 411, 355–362. [Google Scholar] [CrossRef]
- Sadollahkhani, A.; Nur, O.; Willander, M.; Kazeminezhad, I.; Khranovskyy, V.; Eriksson, M.O.; Yakimova, R.; Holtz, P.O. A detailed optical investigation of ZnO@ ZnS core-shell nanoparticles and their photocatalytic activity at different pH values. Ceram. Int. 2015, 41, 7174–7184. [Google Scholar] [CrossRef]
- Zhou, P.; Yu, J.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Xu, J.-J.; Chen, H.-Y. Electrochemical behavior of nanosized Prussian blue self-assembled on Au electrode surface. Electrochem. Commun. 2002, 4, 421–425. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Hao, C.; Feng, F.; Yin, H.; Si, N. Solid-Phase Synthesis of Mesoporous ZnO Using Lignin-Amine Template and Its Photocatalytic Properties. Ind. Eng. Chem. Res. 2014, 53, 6585–6592. [Google Scholar] [CrossRef]
- Bekena, F.T.; Kuo, D.H.; Kebede, W.L. Universal and highly efficient degradation performance of novel Bi2 (O, S) 3/Mo (O, S) 2 nanocomposite photocatalyst under visible light. Sep. Purif. Technol. 2020, 247, 117042. [Google Scholar] [CrossRef]
Temperature/°C | Reaction Time/h | Photocatalytic Degradation Rate/% |
---|---|---|
12 | 74.4 | |
180 | 18 | 73.6 |
24 | 67.7 | |
12 | 67.3 | |
160 | 18 | 71.2 |
24 | 60 |
Sample | BMO | ZnO | 0.1-BMO | 0.2-BMO | 0.3-BMO | 0.4-BMO |
---|---|---|---|---|---|---|
Sbet (m2/g) | 38.34 | 14.54 | 15.95 | 16.68 | 18.48 | 21.32 |
Photocatalyst | Organic Dyes | Dosage | Dye Concentration | Photocatalytic Time | Light Source | Efficiency | Ref. |
---|---|---|---|---|---|---|---|
Bi2MoO6/ZnO | MB | - | 10 mg/L | 180 min | 500 W, Tungsten lamp | 91% | [31] |
Bi2MoO6/ZnO | MO | 2 mg/mL | 20 mg/L | 60 min | CHF-XM-500 W | 95% | [33] |
Bi2MoO6/ZnO | MO | 1 mg/mL | 10 mg/L | 6 h | 300 W xenon lamp | Nearly 100% | [34] |
ZnO/GO | MB | 0.8 mg/mL | 5.0 × 10−5 mol/L | 60 min | 300 W, Xe light | 98.1% | [42] |
ZnO/γ-Bi2MoO6 | MB | 1.5 mg/mL | 20 mg/L | 240 min | 500 W, Xe lamp | 89.6% | [60] |
Sb2O3/ZnO | MB | - | 10 mg/L | 90 min | UV light | 71% | [61] |
ZnO/Bi2MoO6 | RhB | - | 5 mg/L | 350 min | 300 W Xenon lamp | 60% | [62] |
Bi2MoO6/ZnO | MB | 0.375 mg/mL | 10 mg/L | 120 min | 300 W xenon arc lamp | 92% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Tang, J.; Qiao, Q.-a.; Cai, H.; Dong, Y.; Jin, J.; Xu, Y.; Gao, H. Construction and Enhanced Efficiency of Bi2MoO6/ZnO Compo-Sites for Visible-Light-Driven Photocatalytic Performance. Nanomaterials 2023, 13, 214. https://doi.org/10.3390/nano13010214
Yan L, Tang J, Qiao Q-a, Cai H, Dong Y, Jin J, Xu Y, Gao H. Construction and Enhanced Efficiency of Bi2MoO6/ZnO Compo-Sites for Visible-Light-Driven Photocatalytic Performance. Nanomaterials. 2023; 13(1):214. https://doi.org/10.3390/nano13010214
Chicago/Turabian StyleYan, Liyun, Jiahui Tang, Qing-an Qiao, Honglan Cai, Yuqi Dong, Juan Jin, Yanbin Xu, and Hongwei Gao. 2023. "Construction and Enhanced Efficiency of Bi2MoO6/ZnO Compo-Sites for Visible-Light-Driven Photocatalytic Performance" Nanomaterials 13, no. 1: 214. https://doi.org/10.3390/nano13010214
APA StyleYan, L., Tang, J., Qiao, Q.-a., Cai, H., Dong, Y., Jin, J., Xu, Y., & Gao, H. (2023). Construction and Enhanced Efficiency of Bi2MoO6/ZnO Compo-Sites for Visible-Light-Driven Photocatalytic Performance. Nanomaterials, 13(1), 214. https://doi.org/10.3390/nano13010214