From Ionic Nanoparticle Organic Hybrids to Ionic Nanocomposites: Structure, Dynamics, and Properties: A Review
Abstract
:1. Introduction
2. Experiments
2.1. Structure and Dynamics
2.1.1. Spherical Nanofillers
2.1.2. Anisotropic Nanofillers
Nanofiller | Nanofiller’s | Canopy or | Canopy’s Functional | Ref. |
---|---|---|---|---|
Functionalization | Polymer | Group | ||
Silica | Ammonium | Isostearate | Carboxylic | [33] |
Silica | Sulfonic acid | PEG | Tertiary amine | [34] |
Silica | Sulfonic acid | polyetheramine (Jeffamine), PEO | NH | [35,36,48,50] |
Silica | Ammonium | PEG | Sulfonate | [38] |
Silica | Ammonium | Alkyl chains (C13-C15) | Sulfonate | [39,40] |
Silica | Ammonium | PEG | Sulfonate | [41] |
Silica | Sulfonic acid | Ethomeen | Tert-amine | [43] |
Hollow silica | Ammonium | PEG | Sulfonate | [44] |
Hollow silica | Sulfonic acid | Jeffamine | NH | [45] |
Hollow silica | Carboxylic acid | PEG | Tertiary amine | [99] |
Silica | Sulfonic acid | Polyurethane | Imidazolium | [58] |
Silica | Sulfonic acid | Poly(lactic acid) | Imidazolium | [59,119] |
<Silica | Sulfonic acid | PDMS | Ammonium | [120] |
Carbon black | Ammonium | PEG | Sulfonate | [72] |
Anatase (TiO) | Ammonium | PEG | Sulfonate | [73] |
POSS | Ammonium | PEG-based polymers | Carboxylic/Sulfonic | [77] |
Fullerene | Hydroxyl | Jeffamine | NH | [78] |
ZnO | Ammonium | PEG-based copolymer | Sulfonate | [79] |
-FeO | Ammonium | Alkyl chains (C13-C15) | Sulfonate | [39,40] |
FeO | Ammonium | PEG | Sulfonate | [80] |
FeO | DHPA | PEG | Ammonium | [81] |
Gold (Au) | Sulfonate | Ammonium chloride (Adogen) | Quarter-ammonium | [83] |
Gold (Au) | Carboxylic acid | PEG | Tertiary amine | [84] |
Gold (Au) | Sulfonate | tris(2-ethylhexyl)/triisooctyl/triisopentyl/ | ||
tripentyl/trihexyl/trioctylamine | Quarter-amine | [121] | ||
Au nanorods | Sulfonic acid | Jeffamine | NH | [102] |
MnSn(OH) | Sulfonic acid | Jeffamine | NH | [103] |
MoS | Sulfonic acid | Ethomeen/PEG/ | Tertiary amine | [85,86,88] |
Quantum dot (QD) | Thioglycolic acid | Jeffamine | [89] | |
Carbon QD | Sulfonate | Polyurethane | NH | [90] |
MWCNT | Ammonium | PEG | Sulfonate | [21,93,94,95] |
MWCNT+FeO | Ammonium | PEG | Sulfonate | [97] |
Graphene+FeO | Sulfonic acid | Jeffamine | NH | [98] |
Graphene | Quarter-Amine | PEG | Sulfonate | [122] |
Graphene+FeO | Ammonium | PEG | Sulfonate | [111] |
Graphene | Carboxylic/Sulfonic acid | Jeffamine | NH | [104] |
Graphene | Sulfonic acid | Jeffamine | NH | [105] |
Graphene | Carboxylic acid | VBL | hydroxyl (OH) | [107] |
Graphene+SiO | Sulfonate | Jeffamine | NH | [106] |
Calcium carbonate | Ammonium | PEG | Sulfonate | [112,113] |
Halloysite (Hal) | Ammonium | PEG | Sulfonate | [115] |
FeO | Ammonium | Polyacrylate copolymer | Sulfonate | [123] |
Peroskite nanosheet | Sodium alginate (carboxylated) | Poly(ether-imine) | Ammonium | [116] |
TiCT MXene | Sulfonic acid | Jeffamine | Ammonium | [117] |
Montmorillonite clay | Quaternary ammonium | Poly(butylene terephthalate) | Sulfonate | [118] |
2.2. Mechanical Properties
2.2.1. Spherical Nanofillers
2.2.2. Anisotropic Nanofillers
2.3. Rheological Properties
2.3.1. Spherical Nanofillers
2.3.2. Anisotropic Nanofillers
2.4. Self-Healing
3. Simulations
3.1. Structure and Dynamics
3.2. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akcora, P.; Liu, H.; Kumar, S.K.; Moll, J.; Li, Y.; Benicewicz, B.C.; Schadler, L.S.; Acehan, D.; Panagiotopoulos, A.Z.; Pryamitsyn, V.; et al. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat. Mater. 2009, 8, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Benicewicz, B.C.; Vaia, R.A.; Winey, K.I. 50th anniversary perspective: Are polymer nanocomposites practical for applications? Macromolecules 2017, 50, 714–731. [Google Scholar] [CrossRef]
- Yang, S.; Liu, S.; Narayanan, S.; Zhang, C.; Akcora, P. Chemical Heterogeneity in Interfacial Layers of Polymer Nanocomposites. Soft Matter 2018, 14, 4784–4791. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Krishnamoorti, R. Nanocomposites: Structure, phase behavior, and properties. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 37–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.C.; Parrish, E.; Composto, R.J. Macromolecule and particle dynamics in confined media. Macromolecules 2016, 49, 5755–5772. [Google Scholar] [CrossRef]
- Griffin, P.J.; Bocharova, V.; Middleton, L.R.; Composto, R.J.; Clarke, N.; Schweizer, K.S.; Winey, K.I. Influence of the bound polymer layer on nanoparticle diffusion in polymer melts. ACS Macro Lett. 2016, 5, 1141. [Google Scholar] [CrossRef]
- Karatrantos, A.V.; Clarke, N. Theory and Modeling of Polymer Nanocomposites; Springer: Berlin/Heidelberg, Germany, 2021; Chapter Polymer Dynamics in Polymer-Nanoparticle Interface; pp. 81–100. [Google Scholar]
- Moghimikheirabadi, A.; Kröger, M.; Karatrantos, A.V. Insights from modeling into structure, entanglements, and dynamics in attractive polymer nanocomposites. Soft Matter 2021, 17, 6362–6373. [Google Scholar] [CrossRef]
- Karatrantos, A.; Composto, R.J.; Winey, K.I.; Clarke, N. Structure and conformations of polymer / SWCNT nanocomposites. Macromolecules 2011, 44, 9830–9838. [Google Scholar] [CrossRef]
- Karatrantos, A.; Clarke, N.; Composto, R.J.; Winey, K.I. Polymer conformations in polymer nanocomposites containing spherical nanoparticles. Soft Matter 2015, 11, 382. [Google Scholar] [CrossRef] [Green Version]
- Karatrantos, A.; Composto, R.J.; Winey, K.I.; Clarke, N. Polymer and spherical nanoparticle diffusion in nanocomposites. J. Chem. Phys. 2017, 146, 203331. [Google Scholar] [CrossRef]
- Kropka, J.M.; Sakai, V.G.; Green, P.F. Local polymer dynamics in polymer-C60 mixtures. Nano Lett. 2008, 8, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Mu, M.; Composto, R.J.; Clarke, N.; Winey, K.I. Minimum in diffusion coefficient with increasing MWCNT concentration requires tracer molecules to be larger than nanotubes. Macromolecules 2009, 42, 8365–8369. [Google Scholar] [CrossRef]
- Glomann, T.; Hamm, A.; Allgaier, J.; Hubner, E.G.; Radulescu, A.; Farago, B.; Schneider, G.J. A microscopic view on the large scale chain dynamics in nanocomposites with attractive interactions. Soft Matter 2013, 9, 10559. [Google Scholar] [CrossRef] [Green Version]
- Voylov, D.N.; Holt, A.P.; Doughty, B.; Bocharova, V.; Meyer, H.M.; Cheng, S.; Martin, H.; Dadmun, M.D.; Kisliuk, A.; Sokolov, A.P. Unraveling the Molecular Weight Dependence of Interfacial Interactions in Poly(2-vinylpyridine)/Silica Nanocomposites. ACS Macro Lett. 2017, 6, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Holt, A.P.; Bocharova, V.; Cheng, S.; Kisliuk, M.; White, B.T.; Saito, T.; Uhrig, D.; Mahalik, J.P.; Kumar, R.; Imel, A.E.; et al. Controlling Interfacial Dynamics: Covalent Bonding versus Physical Adsorption in Polymer Nanocomposites. ACS Nano 2016, 10, 6843. [Google Scholar] [CrossRef] [PubMed]
- Van Ruymbeke, E. Preface: Special Issue on Associating Polymers. J. Rheol. 2017, 61, 1099–1102. [Google Scholar] [CrossRef]
- Vereroudakis, E.; Vlassopoulos, D. Tunable dynamic properties of hydrogen-bonded supramolecular assemblies in solution. Progr. Polym. Sci. 2021, 112, 101321. [Google Scholar] [CrossRef]
- Karatrantos, A.V.; Khantaveramongkol, J.; Kröger, M. Structure and Diffusion of Ionic PDMS Melts. Polymers 2022, 14, 3070. [Google Scholar] [CrossRef]
- Fernandes, N.J.; Wallin, T.J.; Vaia, R.A.; Koerner, H.; Giannelis, E.P. Nanoscale ionic materials. Chem. Mater. 2014, 26, 84–96. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, D.; Zheng, Y. A review on synthesis and application of solvent-free nanofluids. Adv. Compos. Hybrid Mater. 2019, 2, 608–625. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Deb, D.; Dutta, B.; Bose, P. Ionic liquid functionalized nanoparticles: Synthetic strategies and electrochemical applications. In Functionalized Nanomaterials Based Devices for Environmental Applications; Hussain, C.M., Shukla, S.K., Joshi, G.M., Eds.; Micro and Nano Technologies, Elsevier: Amsterdam, The Netherlands, 2021; pp. 147–173. [Google Scholar]
- Kleinschmidt, A.C.; Almeida, J.H.S.; Donato, R.K.; Schrekke, H.S.; Marques, V.C.; Corat, E.J.; Amico, S.C. Functionalized-Carbon Nanotubes with Physisorbed Ionic Liquid as Filler for Epoxy Nanocomposites. J. Nanosci. Nanotechn. 2016, 16, 9132–9140. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, H.; Zheng, Q.; Song, Y. Influence of ionic liquid on glass transition, dynamic rheology, and thermal stability of poly(methyl methacrylate)/silica nanocomposites. J. Appl. Polym. Sci. 2019, 136, 48007. [Google Scholar] [CrossRef]
- Feng, T.; Wang, Y.; Dong, H.; Piao, J.; Wang, Y.; Ren, J.; Chen, W.; Liu, W.; Chen, X.; Jiao, C. Ionic liquid modified boron nitride nanosheets for interface engineering of epoxy resin nanocomposites: Improving thermal stability, flame retardancy, and smoke suppression. Polym. Degrad. Stab. 2022, 199, 109899. [Google Scholar] [CrossRef]
- Xu, H.; Tong, F.; Yu, J.; Wen, L.; Zhang, J.; He, J. A one-pot method to prepare transparent poly(methyl methacrylate)/montmorillonite nanocomposites using imidazolium-based ionic liquids. Polym. Int. 2012, 61, 1382–1388. [Google Scholar] [CrossRef]
- Santhosh Babu, S.; Nakanishi, T. Nonvolatile functional molecular liquids. Chem. Commun. 2013, 49, 9373–9382. [Google Scholar] [CrossRef] [PubMed]
- Kerche, E.F.; Fonseca, E.; Schrekker, H.S.; Amico, S.C. Ionic liquid-functionalized reinforcements in epoxy-based composites: A systematic review. Polym. Compos. 2022, 43, 5783–5801. [Google Scholar] [CrossRef]
- Donato, K.Z.; Matejka, L.; Mauler, R.S.; Donato, R.K. Recent Applications of Ionic Liquids in the Sol-Gel Process for Polymer–Silica Nanocomposites with Ionic Interfaces. Colloids Interfaces 2017, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Moganty, S.S.; Jayaprakash, N.; Nugent, J.L.; Shen, J.; Archer, L.A. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes. Angew. Chem. Int. Ed. 2010, 49, 9158–9161. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Md. Jamil, S.N.A.; Abdan, K. A Brief Review on the Influence of Ionic Liquids on the Mechanical, Thermal, and Chemical Properties of Biodegradable Polymer Composites. Polymers 2021, 13, 2597. [Google Scholar] [CrossRef]
- Ahmad, A.; Mansor, N.; Mahmood, H.; Iqbal, T.; Moniruzzaman, M. Effect of ionic liquids on thermomechanical properties of polyetheretherketone-multiwalled carbon nanotubes nanocomposites. J. Appl. Polym. Sci. 2022, 139, 51788. [Google Scholar] [CrossRef]
- Bourlinos, A.B.; Giannelis, E.P.; Zhang, Q.; Archer, L.A.; Floudas, G.; Fytas, G. Surface-functionalized nanoparticles with liquid-like behavior: The role of the constituent components. Eur. Phys. J. E 2006, 20, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Tan, Y.; Yin, X.; Chen, S.; Chen, D.; Wang, L.; Zhou, Y.; Xiong, C. Preparation and characterization of monodisperse solvent-free silica nanofluids. J. Dispers. Sci. Technol. 2017, 38, 425–431. [Google Scholar] [CrossRef]
- Jespersen, M.L.; Mirau, P.A.; Meerwall, E.v.; Vaia, R.A.; Rodriguez, R.; Giannelis, E.P. Canopy Dynamics in Nanoscale Ionic Materials. ACS Nano 2010, 4, 3735–3742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, N.J.; Akbarzadeh, J.; Peterlik, H.; Giannelis, E.P. Synthesis and properties of highly dispersed ionic silica-poly(ethylene oxide) nanohybrids. ACS Nano 2013, 7, 1265–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Zhang, L.; Zhang, G.; Wang, D.; Wang, T.; Wang, Q. High lubricity and electrical responsiveness of solvent-free ionic SiO2 nanofluids. J. Mater. Chem. A 2018, 6, 2817–2827. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, Q.; Song, Y. Comparison studies of rheological and thermal behaviors of ionic liquids and nanoparticle ionic liquids. Phys. Chem. Chem. Phys. 2015, 17, 19815–19819. [Google Scholar] [CrossRef]
- Bourlinos, A.; Herrera, R.; Chalkias, N.; Jiang, D.; Zhang, Q.; Archer, L.; Giannelis, E. Surface-Functionalized Nanoparticles with Liquid-Like Behavior. Adv. Mater. 2005, 17, 234–237. [Google Scholar] [CrossRef]
- Smarsly, B.; Kaper, H. Liquid Inorganic–Organic Nanocomposites: Novel Electrolytes and Ferrofluids. Angew. Chem. Int. Ed. 2005, 44, 3809–3811. [Google Scholar] [CrossRef]
- He, H.; Yan, Y.; Qiu, Z.; Tan, X. A novel antistatic polyurethane hybrid based on nanoscale ionic material. Progr. Org. Coat. 2017, 113, 110–116. [Google Scholar] [CrossRef]
- Texter, J.; Qiu, Z.; Crombez, R.; Byrom, J.; Shen, W. Nanofluid acrylate composite resins—initial preparation and characterization. Polym. Chem. 2011, 2, 1778–1788. [Google Scholar] [CrossRef]
- Zhang, J.X.; Zheng, Y.P.; Lan, L.; Shi, Q.; Wu, M.F.; Lu, S.; Yan, C. The preparation of a silica nanoparticle hybrid ionic nanomaterial and its electrical properties. RSC Adv. 2013, 3, 16714–16719. [Google Scholar] [CrossRef]
- Zhang, J.; Chai, S.H.; Qiao, Z.A.; Mahurin, S.M.; Chen, J.; Fang, Y.; Wan, S.; Nelson, K.; Zhang, P.; Dai, S. Porous Liquids: A Promising Class of Media for Gas Separation. Angew. Chem. Int. Ed. 2015, 54, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Zheng, Y.; Wang, T.; Li, P.; Wang, Y.; Yao, D. Effect of Pore Size on the Carbon Dioxide Adsorption Behavior of Porous Liquids Based on Hollow Silica. ChemPhysChem 2018, 19, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Petit, C.; Park, Y.; Lin, K.Y.A.; Park, A.H.A. Spectroscopic Investigation of the Canopy Configurations in Nanoparticle Organic Hybrid Materials of Various Grafting Densities during CO2 Capture. J. Phys. Chem. C 2012, 116, 516–525. [Google Scholar] [CrossRef]
- Lin, K.Y.A.; Park, A.H.A. Effects of Bonding Types and Functional Groups on CO2 Capture using Novel Multiphase Systems of Liquid-like Nanoparticle Organic Hybrid Materials. Environ. Sci. Technol. 2011, 45, 6633–6639. [Google Scholar] [CrossRef]
- Park, Y.; Shin, D.; Jang, Y.N.; Park, A.H.A. CO2 Capture Capacity and Swelling Measurements of Liquid-like Nanoparticle Organic Hybrid Materials via Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. J. Chem. Eng. Data 2012, 57, 40–45. [Google Scholar] [CrossRef]
- Park, Y.; Petit, C.; Han, P.; Alissa Park, A.H. Effect of canopy structures and their steric interactions on CO2 sorption behavior of liquid-like nanoparticle organic hybrid materials. RSC Adv. 2014, 4, 8723–8726. [Google Scholar] [CrossRef]
- Liu, Y.; Ruan, Y.; Zhang, B.; Qiao, X.; Liu, C. Tuning of Ionic Interaction and Rheological Properties of Nanoscale Ionic Materials. Chem. J. Univ.-Chin. 2016, 37, 767–774. [Google Scholar]
- Andrew Lin, K.Y.; Park, Y.; Petit, C.; Park, A.H.A. Thermal stability, swelling behavior and CO2 absorption properties of Nanoscale Ionic Materials (NIMs). RSC Adv. 2014, 4, 65195–65204. [Google Scholar] [CrossRef] [Green Version]
- Feric, T.G.; Hamilton, S.T.; Haque, M.A.; Jeddi, J.; Sangoro, J.; Dadmun, M.D.; Park, A.H.A. Impacts of Bond Type and Grafting Density on the Thermal, Structural, and Transport Behaviors of Nanoparticle Organic Hybrid Materials-Based Electrolytes. Adv. Funct. Mater. 2022, 32, 2203947. [Google Scholar] [CrossRef]
- Haque, M.A.; Feric, T.G.; Hamilton, S.T.; Park, A.H.A.; Dadmun, M.D. Structure and Dispersion of Free and Grafted Polymer in Nanoparticle Organic Hybrid Materials-Based Solutions by Small-Angle Neutron Scattering. J. Phys. Chem. C 2021, 125, 5327–5334. [Google Scholar] [CrossRef]
- Hamilton, S.T.; Feric, T.G.; Gładysiak, A.; Cantillo, N.M.; Zawodzinski, T.A.; Park, A.H.A. Mechanistic Study of Controlled Zinc Electrodeposition Behaviors Facilitated by Nanoscale Electrolyte Additives at the Electrode Interface. ACS Appl. Mater. Interf. 2022, 14, 22016–22029. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wang, C.; Hinestroza, J.P. Electrostatic assembly of core-corona silica nanoparticles onto cotton fibers. Cellulose 2013, 20, 1727–1736. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, L.; Zhao, F.; Li, G.; Zhang, G. Tribological behaviors of novel epoxy nanocomposites filled with solvent-free ionic SiO2 nanofluids. Compos. B 2021, 215, 108751. [Google Scholar] [CrossRef]
- Hao, Q.H.; Cheng, J.; Yang, F.; Tan, H.G. Self-assembled morphologies of polyelectrolyte-grafted nanoparticles directed by oppositely charged polymer matrices. RSC Adv. 2022, 12, 19726–19735. [Google Scholar] [CrossRef]
- Odent, J.; Raquez, J.M.; Dubois, P.; Giannelis, E.P. Ultra-stretchable ionic nanocomposites: From dynamic bonding to multi-responsive behaviors. J. Mater. Chem. A 2017, 5, 13357–13363. [Google Scholar] [CrossRef]
- Odent, J.; Raquez, J.M.; Samuel, C.; Barrau, S.; Enotiadis, A.; Dubois, P.; Giannelis, E.P. Shape-memory behavior of polylactide/silica ionic hybrids. Macromolecules 2017, 50, 2896. [Google Scholar] [CrossRef]
- Potaufeux, J.E.; Odent, J.; Notta-Cuvier, D.; Barrau, S.; Magnani, C.; Delille, R.; Zhang, C.; Liu, G.; Giannelis, E.P.; Müller, A.J.; et al. Mastering Superior Performance Origins of Ionic Polyurethane/Silica Hybrids. ACS Appl. Polym. Mater. 2021, 3, 6684–6693. [Google Scholar] [CrossRef]
- Jespersen, M.L.; Mirau, P.A.; von Meerwall, E.; Vaia, R.A.; Rodriguez, R.; Fernandes, N.J.; Giannelis, E.P. NMR Spectroscopy of Polymers: Innovative Strategies for Complex Macromolecules; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2011; Chapter 9: NMR Characterization of Canopy Dynamics in Nanoscale Ionic Materials; pp. 149–160. [Google Scholar]
- Jespersen, M.L.; Mirau, P.A.; von Meerwall, E.D.; Koerner, H.; Vaia, R.A.; Fernandes, N.J.; Giannelis, E.P. Hierarchical Canopy Dynamics of Electrolyte-Doped Nanoscale Ionic Materials. Macromolecules 2013, 46, 9669–9675. [Google Scholar] [CrossRef]
- Choi, S.; Moon, S.; Park, Y. Spectroscopic Investigation of Entropic Canopy–Canopy Interactions of Nanoparticle Organic Hybrid Materials. Langmuir 2020, 36, 9626–9633. [Google Scholar] [CrossRef]
- Mapesa, E.U.; Cantillo, N.M.; Hamilton, S.T.; Harris, M.A.; Zawodzinski, T.A.; Alissa Park, A.H.; Sangoro, J. Localized and Collective Dynamics in Liquid-like Polyethylenimine-Based Nanoparticle Organic Hybrid Materials. Macromolecules 2021, 54, 2296–2305. [Google Scholar] [CrossRef]
- Cantillo, N.M.; Bruce, M.; Hamilton, S.T.; Feric, T.G.; Park, A.H.A.; Zawodzinski, T.A. Electrochemical Behavior of Copper Ion Complexed with Nanoparticle Organic Hybrid Materials. J. Electrochem. Soc. 2020, 167, 116508. [Google Scholar] [CrossRef]
- Hamilton, S.T.; Feric, T.G.; Bhattacharyya, S.; Cantillo, N.M.; Greenbaum, S.G.; Zawodzinski, T.A.; Park, A.H.A. Nanoscale Hybrid Electrolytes with Viscosity Controlled Using Ionic Stimulus for Electrochemical Energy Conversion and Storage. JACS Au 2022, 2, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Rim, G.; Feric, T.G.; Moore, T.; Park, A.H.A. Solvent Impregnated Polymers Loaded with Liquid-Like Nanoparticle Organic Hybrid Materials for Enhanced Kinetics of Direct Air Capture and Point Source CO2 Capture. Adv. Funct. Mater. 2021, 31, 2010047. [Google Scholar] [CrossRef]
- Hu, J.; Wang, W.; Yu, R.; Guo, M.; He, C.; Xie, X.; Peng, H.; Xue, Z. Solid polymer electrolyte based on ionic bond or covalent bond functionalized silica nanoparticles. RSC Adv. 2017, 7, 54986–54994. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wang, W.; Zhou, B.; Feng, Y.; Xie, X.; Xue, Z. Poly(ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery. J. Membr. Sci. 2019, 575, 200–208. [Google Scholar] [CrossRef]
- Feric, T.G.; Hamilton, S.T.; Cantillo, N.M.; Imel, A.E.; Zawodzinski, T.A.; Park, A.H.A. Dynamic Mixing Behaviors of Ionically Tethered Polymer Canopy of Nanoscale Hybrid Materials in Fluids of Varying Physical and Chemical Properties. J. Phys. Chem. B 2021, 125, 9223–9234. [Google Scholar] [CrossRef]
- Enotiadis, A.; Fernandes, N.J.; Becerra, N.A.; Zammarano, M.; Giannelis, E.P. Nanocomposite electrolytes for lithium batteries with reduced flammability. Electrochim. Acta 2018, 269, 76–82. [Google Scholar] [CrossRef]
- Li, Q.; Dong, L.; Liu, Y.; Xie, H.; Xiong, C. A carbon black derivative with liquid behavior. Carbon 2011, 49, 1047–1051. [Google Scholar] [CrossRef]
- Bourlinos, A.B.; Ray Chowdhury, S.; Herrera, R.; Jiang, D.D.; Zhang, Q.; Archer, L.A.; Giannelis, E.P. Functionalized Nanostructures with Liquid-Like Behavior: Expanding the Gallery of Available Nanostructures. Adv. Funct. Mater. 2005, 15, 1285–1290. [Google Scholar] [CrossRef]
- Yu, P.Y.; Zheng, Y.P.; Lan, L. The Synthesis of Solvent-Free TiO2 Nanofluids through Surface Modification. Soft Nanosci. Lett. 2011, 1, 46–50. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, A.; Tan, Y.; Wang, N.; Yu, P. Property-Structure Relationship of Titania Ionic Liquid Nanofluids. Soft Mater. 2013, 11, 315–320. [Google Scholar] [CrossRef]
- Heinrich, C.; Niedner, L.; Oberhausen, B.; Kickelbick, G. Surface-Charged Zirconia Nanoparticles Prepared by Organophosphorus Surface Functionalization with Ammonium or Sulfonate Groups. Langmuir 2019, 35, 11369–11379. [Google Scholar] [CrossRef]
- Petit, C.; Lin, K.Y.A.; Park, A.H.A. Design and Characterization of Liquidlike POSS-Based Hybrid Nanomaterials Synthesized via Ionic Bonding and Their Interactions with CO2. Langmuir 2013, 29, 12234–12242. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, N.; Dallas, P.; Rodriguez, R.; Bourlinos, A.B.; Georgakilas, V.; Giannelis, E.P. Fullerol ionic fluids. Nanoscale 2010, 2, 1653–1656. [Google Scholar] [CrossRef] [Green Version]
- Bourlinos, A.B.; Stassinopoulos, A.; Anglos, D.; Herrera, R.; Anastasiadis, S.H.; Petridis, D.; Giannelis, E.P. Functionalized ZnO Nanoparticles with Liquidlike Behavior and their Photoluminescence Properties. Small 2006, 2, 513–516. [Google Scholar] [CrossRef]
- Tan, Y.; Yaping, Z.; Nan, W.; Aibo, Z. Controlling the Properties of Solvent-free Fe3O4 Nanofluids by Corona Structure. Nano Micro Lett. 2012, 4, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wu, J.; Xu, X.; Wang, X.; Yang, S.; Tang, Z.; Shen, H.; Liu, X.; Zhao, N.; Xu, J. Solvent free nanoscale ionic materials based on Fe3O4 nanoparticles modified with mussel inspired ligands. J. Colloid Interfaces Sci. 2018, 531, 404–409. [Google Scholar] [CrossRef]
- Warren, S.C.; Banholzer, M.J.; Slaughter, L.S.; Giannelis, E.P.; DiSalvo, F.J.; Wiesner, U.B. Generalized Route to Metal Nanoparticles with Liquid Behavior. J. Am. Chem. Soc. 2006, 128, 12074–12075. [Google Scholar] [CrossRef]
- Patton, S.T.; Voevodin, A.A.; Vaia, R.A.; Pender, M.; Diamanti, S.J.; Phillips, B. Nanoparticle Liquids for Surface Modification and Lubrication of MEMS Switch Contacts. J. Microelectromech. Syst. 2008, 17, 741–746. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, J.; Lan, L.; Yu, P.; Rodriguez, R.; Herrera, R.; Wang, D.; Giannelis, E.P. Preparation of Solvent-Free Gold Nanofluids with Facile Self-Assembly Technique. ChemPhysChem 2010, 11, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gu, S.; Yan, B.; Ren, J. Solvent-free ionic molybdenum disulphide (MoS2) nanofluids. J. Mater. Chem. 2012, 22, 14843–14846. [Google Scholar] [CrossRef]
- Osim, W.; Stojanovic, A.; Akbarzadeh, J.; Peterlik, H.; Binder, W.H. Surface modification of MoS2 nanoparticles with ionic liquid–ligands: Towards highly dispersed nanoparticles. Chem. Commun. 2013, 49, 9311–9313. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, Y.; Yan, B. Solvent-free ionic molybdenum disulfide (MoS2) nanofluids with self-healing lubricating behaviors. Mater. Lett. 2013, 97, 169–172. [Google Scholar] [CrossRef]
- Gu, S.Y.; Gao, X.F.; Zhang, Y.H. Synthesis and characterization of solvent-free ionic molybdenum disulphide (MoS2) nanofluids. Mater. Chem. Phys. 2015, 149–150, 587–593. [Google Scholar] [CrossRef]
- Li, X.; Ni, X.; Liang, Z.; Shen, Z. Synthesis of imidazolium-functionalized ionic polyurethane and formation of CdTe quantum dot–polyurethane nanocomposites. J. Polym. Sci. A 2012, 50, 509–516. [Google Scholar] [CrossRef]
- Bhattacharjee, L.; Mohanta, K.; Pal, K.; Koner, A.L.; Bhattacharjee, R.R. Polarization induced dynamic photoluminescence in carbon quantum dot-based ionic fluid. J. Mater. Chem. A 2016, 4, 2246–2251. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Dong, L.; Huang, J.; Li, Q.; Fan, Y.; Xiong, J.; Xiong, C. Fluxible Monodisperse Quantum Dots with Efficient Luminescence. Angew. Chem. Int. Ed. 2010, 122, 10139–10142. [Google Scholar] [CrossRef]
- Sun, L.; Fang, J.; Reed, J.C.; Estevez, L.; Bartnik, A.C.; Hyun, B.R.; Wise, F.W.; Malliaras, G.G.; Giannelis, E.P. Lead–Salt Quantum-Dot Ionic Liquids. Small 2010, 6, 638–641. [Google Scholar] [CrossRef]
- Lei, Y.; Xiong, C.; Dong, L.; Guo, H.; Su, X.; Yao, J.; You, Y.; Tian, D.; Shang, X. Ionic Liquid of Ultralong Carbon Nanotubes. Small 2007, 3, 1889–1893. [Google Scholar] [CrossRef]
- Bourlinos, A.; Georgakilas, V.; Tzitzios, V.; Boukos, N.; Herrera, R.; Giannelis, E. Functionalized Carbon Nanotubes: Synthesis of Meltable and Amphiphilic Derivatives. Small 2006, 2, 1188–1191. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Yang, R.; Zheng, Y.; Qu, P.; Chen, L. Effect of polyether amine canopy structure on carbon dioxide uptake of solvent-free nanofluids based on multiwalled carbon nanotubes. Carbon 2015, 95, 408–418. [Google Scholar] [CrossRef]
- Li, Q.; Dong, L.; Fang, J.; Xiong, C. Property-Structure Relationship of Nanoscale Ionic Materials Based on Multiwalled Carbon Nanotubes. ACS Nano 2010, 4, 5797–5806. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yang, R.; Wu, F.; Li, D.; Wang, N.; Zhang, A. A functional liquid-like multiwalled carbon nanotube derivative in the absence of solvent and its application in nanocomposites. RSC Adv. 2014, 4, 30004–30012. [Google Scholar] [CrossRef]
- Li, P.; Zheng, Y.; Wu, Y.; Qu, P.; Yang, R.; Wang, N.; Li, M. A nanoscale liquid-like graphene@Fe3O4 hybrid with excellent amphiphilicity and electronic conductivity. New J. Chem. 2014, 38, 5043–5051. [Google Scholar] [CrossRef]
- Gu, S.; Liu, L.; Yan, B. Effects of ionic solvent-free carbon nanotube nanofluid on the properties of polyurethane thermoplastic elastomer. J. Polym. Res. 2014, 21, 356. [Google Scholar] [CrossRef]
- Lan, L.; Zheng, Y.P.; Zhang, A.B.; Zhang, J.X.; Wang, N. Study of ionic solvent-free carbon nanotube nanofluids and its composites with epoxy matrix. J. Nanopart. Res. 2012, 14, 753. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; He, Z.; Yao, D.; Zheng, Y. Damping and mechanical properties of carbon nanotube solvent-free nanofluids-filled epoxy nanocomposites. Polym. Compos. 2021, 42, 3262–3271. [Google Scholar] [CrossRef]
- Bhattacharjee, R.R.; Li, R.; Estevez, L.; Smilgies, D.M.; Amassian, A.; Giannelis, E.P. A plasmonic fluid with dynamically tunable optical properties. J. Mater. Chem. 2009, 19, 8728–8731. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zheng, Y.; Yang, R.; Fan, W.; Wang, N.; Zhang, A. Flexible Nanoscale Thread of MnSn(OH)6 Crystallite with Liquid-like Behavior and its Application in Nanocomposites. ChemPhysChem 2015, 16, 2524–2529. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, B.; Lu, H.; Liu, C.Y. Nanoscale ionic materials based on hydroxyl-functionalized graphene. J. Mater. Chem. A 2014, 2, 1409–1417. [Google Scholar] [CrossRef]
- Li, P.; Shi, T.; Yao, D.; Wang, Y.; Liu, C.; Zheng, Y. Covalent nanocrystals-decorated solvent-free graphene oxide liquids. Carbon 2016, 110, 87–96. [Google Scholar] [CrossRef]
- Hao, L.; Hao, W.; Li, P.; Liu, G.; Li, H.; Aljabri, A.; Xie, Z. Friction and Wear Properties of a Nanoscale Ionic Liquid-like GO@SiO2 Hybrid as a Water-Based Lubricant Additive. Lubricants 2022, 10, 125. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, L.; Zeng, C.; Lin, T.; Guo, B. General route to graphene with liquid-like behavior by non-covalent modification. Soft Matter 2012, 8, 9214–9220. [Google Scholar] [CrossRef]
- Zeng, C.; Tang, Z.; Guo, B.; Zhang, L. Supramolecular ionic liquid based on graphene oxide. Phys. Chem. Chem. Phys. 2012, 14, 9838–9845. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Cheng, Q. Bioinspired graphene-based nanocomposites via ionic interfacial interactions. Compos. Commun. 2018, 7, 16–22. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, J.; Liu, S.; Liang, Y.; Li, S.; Zhou, H.; Zhang, J. The Graphene Oxide Ionic Solvent-Free Nanofluids and Their Battery Performances. Sci. Adv. Mater. 2018, 10, 1706–1713. [Google Scholar] [CrossRef]
- Li, P.; Zheng, Y.; Li, M.; Shi, T.; Li, D.; Zhang, A. Enhanced toughness and glass transition temperature of epoxy nanocomposites filled with solvent-free liquid-like nanocrystal-functionalized graphene oxide. Mater. Des. 2016, 89, 653–659. [Google Scholar] [CrossRef]
- Li, Q.; Dong, L.; Deng, W.; Zhu, Q.; Liu, Y.; Xiong, C. Solvent-free Fluids Based on Rhombohedral Nanoparticles of Calcium Carbonate. J. Am. Chem. Soc. 2009, 131, 9148–9149. [Google Scholar] [CrossRef]
- Wang, X.; Shi, L.; Zhang, J.; Cheng, J.; Wang, X. In situ formation of surface-functionalized ionic calcium carbonate nanoparticles with liquid-like behaviours and their electrical properties. R. Soc. Open Sci. 2018, 5, 170732. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.P.; Zhang, J.X.; Lan, L.; Yu, P.Y. Sepiolite nanofluids with liquid-like behavior. Appl. Surf. Sci. 2011, 257, 6171–6174. [Google Scholar] [CrossRef]
- Du, P.; Liu, D.; Yuan, P.; Deng, L.; Wang, S.; Zhou, J.; Zhong, X. Controlling the macroscopic liquid-like behaviour of halloysite-based solvent-free nanofluids via a facile core pretreatment. Appl. Clay Sci. 2018, 156, 126–133. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, B.; Miao, Z.; Li, Z.; Tu, R.; Zhang, S.; Li, B.W. The Dispersion and Coagulation of Negatively Charged Ca2Nb3O10 Perovskite Nanosheets in Sodium Alginate Dispersion. Nanomaterials 2022, 12, 2591. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ning, H.; Xin, Y.; Wang, Y.; Li, X.; Yao, D.; Zheng, Y.; Pan, Y.; Zhang, H.; He, Z.; et al. Transforming Ti3C2Tx MXenes into nanoscale ionic materials via an electronic interaction strategy. J. Mater. Chem. A 2021, 9, 15441–15451. [Google Scholar] [CrossRef]
- Colonna, M.; Berti, C.; Binassi, E.; Fiorini, M.; Karanam, S.; Brunelle, D.J. Nanocomposite of montmorillonite with telechelic sulfonated poly(butylene terephthalate): Effect of ionic groups on clay dispersion, mechanical and thermal properties. Eur. Polym. J. 2010, 46, 918–927. [Google Scholar] [CrossRef]
- Potaufeux, J.E.; Odent, J.; Notta-Cuvier, D.; Delille, R.; Barrau, S.; Giannelis, E.P.; Lauro, F.; Raquez, J.M. Mechanistic insights on ultra-tough polylactide-based ionic nanocomposites. Compos. Sci. Technol. 2020, 191, 108075. [Google Scholar] [CrossRef]
- Mugemana, C.; Moghimikheirabadi, A.; Arl, D.; Addiego, F.; Schmidt, D.F.; Kröger, M.; Karatrantos, A.V. Ionic poly(dimethylsiloxane)-silica nanocomposites: Dispersion and self-healing. MRS Bull. 2022. [Google Scholar] [CrossRef]
- MacCuspie, R.I.; Elsen, A.M.; Diamanti, S.J.; Patton, S.T.; Altfeder, I.; Jacobs, J.D.; Voevodin, A.A.; Vaia, R.A. Purification–chemical structure–electrical property relationship in gold nanoparticle liquids. Appl. Organomet. Chem. 2010, 24, 590–599. [Google Scholar] [CrossRef]
- Jiao, Y.; Parra, J.; Akcora, P. Effect of Ionic Groups on Polymer-Grafted Magnetic Nanoparticle Assemblies. Macromolecules 2014, 47, 2030–2036. [Google Scholar] [CrossRef]
- Oberhausen, B.; Kickelbick, G. Induction heating induced self-healing of nanocomposites based on surface-functionalized cationic iron oxide particles and polyelectrolytes. Nanoscale Adv. 2021, 3, 5589–5604. [Google Scholar] [CrossRef]
- Maji, P.K.; Guchhait, P.K.; Bhowmick, A.K. Effect of the Microstructure of a Hyperbranched Polymer and Nanoclay Loading on the Morphology and Properties of Novel Polyurethane Nanocomposites. ACS Appl. Mater. Interfaces 2009, 1, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; He, X.; Xu, L.; Zhang, H.; Yan, Y. Synthesis and characterization of biobased polyurethane/SiO2 nanocomposites from natural Sapium sebiferum oil. RSC Adv. 2015, 5, 27097–27106. [Google Scholar] [CrossRef]
- Texter, J. Solvent-Free Nanofluids and Reactive Nanofluids. In Functional Organic Liquids; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; Chapter 10; pp. 169–210. [Google Scholar]
- Rodriguez, R.; Herrera, R.; Archer, L.A.; Giannelis, E.P. Nanoscale Ionic Materials. Adv. Mater. 2008, 20, 4353–4358. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, R.; Herrera, R.; Bourlinos, A.B.; Li, R.; Amassian, A.; Archer, L.A.; Giannelis, E.P. The synthesis and properties of nanoscale ionic materials. Appl. Organomet. Chem. 2010, 24, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Karatrantos, A.; Koutsawa, Y.; Dubois, P.; Clarke, N.; Kröger, M. Miscibility and diffusion in ionic nanocomposites. Polymers 2018, 10, 1010. [Google Scholar] [CrossRef] [Green Version]
- Shah, D.; Maiti, P.; Jiang, D.D.; Batt, C.A.; Giannelis, E.P. Effect of nanoparticle mobility on toughness of polymer nanocomposites. Adv. Mater. 2005, 17, 525. [Google Scholar] [CrossRef]
- Orellana, J.; Moreno-Villoslada, I.; Bose, R.K.; Picchioni, F.; Flores, M.E.; Araya-Hermosilla, R. Self-Healing Polymer Nanocomposite Materials by Joule Effect. Polymers 2021, 13, 649. [Google Scholar] [CrossRef]
- Hatlo, M.; Karatrantos, A.; Lue, L. One-component plasma of point charges and of charged rods. Phys. Rev. E 2009, 80, 061107. [Google Scholar] [CrossRef]
- Ma, J.; Liu, C.; Zhang, Y.; Dong, Y.; Liu, C.; Ma, Z. The influence of hydrogen bond and electrostatic interaction on the mechanical properties of the WPU/modified SiO2 nanocomposites. Colloid Surf. A 2022, 648, 129364. [Google Scholar] [CrossRef]
- Li, Q.; Dong, L.; Li, L.; Su, X.; Xie, H.; Xiong, C. The effect of the addition of carbon nanotube fluids to a polymeric matrix to produce simultaneous reinforcement and plasticization. Carbon 2012, 50, 2056–2060. [Google Scholar] [CrossRef]
- Agarwal, P.; Qi, H.; Archer, L.A. The Ages in a Self-Suspended Nanoparticle Liquid. Nano Lett. 2010, 10, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zheng, Y.; Wu, Y.; Qu, P.; Yang, R.; Zhang, A. Nanoscale ionic graphene material with liquid-like behavior in the absence of solvent. Appl. Surf. Sci. 2014, 314, 983–990. [Google Scholar] [CrossRef]
- Schäfer, S.; Kickelbick, G. Double Reversible Networks: Improvement of Self-Healing in Hybrid Materials via Combination of Diels–Alder Cross-Linking and Hydrogen Bonds. Macromolecules 2018, 51, 6099–6110. [Google Scholar] [CrossRef]
- Yu, H.Y.; Koch, D.L. Structure of Solvent-Free Nanoparticle-Organic Hybrid Materials. Langmuir 2010, 26, 16801–16811. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.; Chremos, A.; Panagiotopoulos, A.Z. Simulations of the structure and dynamics of nanoparticle-based ionic liquids. Faraday Disc. 2011, 154, 29. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.; Panagiotopoulos, A.Z. Molecular Dynamics simulations of silica nanoparticles grafted with poly(ethylene oxide) oligomer chains. J. Phys. Chem. B 2012, 116, 2385–2395. [Google Scholar] [CrossRef]
- Yu, H.Y.; Koch, D.L. Self-diffusion and linear viscoelasticity of solvent-free nanoparticle-organic hybrid materials. J. Rheol. 2014, 58, 369–395. [Google Scholar] [CrossRef]
- Hong, B.; Chremos, A.; Panagiotopoulos, A.Z. Dynamics in coarse-grained models for oligomer-grafted silica nanoparticles. J. Chem. Phys. 2012, 136, 204904. [Google Scholar] [CrossRef]
- Hong, B.; Panagiotopoulos, A.Z. Diffusivities, viscosities, and conductivities of solvent-free ionically grafted nanoparticles. Soft Matter 2013, 9, 6091–6102. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, F.; Dai, S.; Qiao, R. Structure and dynamics of polymeric canopies in nanoscale materials: An electrical double layer perspective. Sci. Rep. 2018, 8, 5191. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Panyukov, S.; Rubinstein, M. Mobility of nonsticky nanoparticles in polymer liquids. Macromolecules 2011, 44, 7853. [Google Scholar] [CrossRef] [PubMed]
- Moghimikheirabadi, A.; Mugemana, C.; Kröger, M.; Karatrantos, A.V. Polymer Conformations, Entanglements and Dynamics in Ionic Nanocomposites: A Molecular Dynamics Study. Polymers 2020, 12, 2591. [Google Scholar] [CrossRef] [PubMed]
- Karatrantos, A.V.; Ohba, T.; Cai, Q. Diffusion of ions and solvent in propylene carbonate solutions for lithium-ion battery applications. J. Mol. Liq. 2020, 320, 114351. [Google Scholar] [CrossRef]
- Karatrantos, A.; Composto, R.J.; Winey, K.I.; Clarke, N. Primitive path network, structure and dynamics of SWCNT/polymer nanocomposites. IOP Conf. Ser. Mat. Sci. Eng. 2012, 40, 012027. [Google Scholar] [CrossRef] [Green Version]
- Karatrantos, A.; Clarke, N.; Kröger, M. Modeling of polymer structure and conformations in polymer nanocomposites from atomistic to mesoscale: A Review. Polym. Rev. 2016, 56, 385–428. [Google Scholar] [CrossRef]
- Moghimikheirabadi, A.; Karatrantos, A.V.; Kröger, M. Ionic Polymer Nanocomposites Subjected to Uniaxial Extension: A Nonequilibrium Molecular Dynamics Study. Polymers 2021, 13, 4001. [Google Scholar] [CrossRef]
- Lin, K.Y.A.; Petit, C.; Park, A.H.A. Effect of SO2 on CO2 Capture Using Liquid-like Nanoparticle Organic Hybrid Materials. Energy Fuels 2013, 27, 4167–4174. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karatrantos, A.V.; Mugemana, C.; Bouhala, L.; Clarke, N.; Kröger, M. From Ionic Nanoparticle Organic Hybrids to Ionic Nanocomposites: Structure, Dynamics, and Properties: A Review. Nanomaterials 2023, 13, 2. https://doi.org/10.3390/nano13010002
Karatrantos AV, Mugemana C, Bouhala L, Clarke N, Kröger M. From Ionic Nanoparticle Organic Hybrids to Ionic Nanocomposites: Structure, Dynamics, and Properties: A Review. Nanomaterials. 2023; 13(1):2. https://doi.org/10.3390/nano13010002
Chicago/Turabian StyleKaratrantos, Argyrios V., Clement Mugemana, Lyazid Bouhala, Nigel Clarke, and Martin Kröger. 2023. "From Ionic Nanoparticle Organic Hybrids to Ionic Nanocomposites: Structure, Dynamics, and Properties: A Review" Nanomaterials 13, no. 1: 2. https://doi.org/10.3390/nano13010002
APA StyleKaratrantos, A. V., Mugemana, C., Bouhala, L., Clarke, N., & Kröger, M. (2023). From Ionic Nanoparticle Organic Hybrids to Ionic Nanocomposites: Structure, Dynamics, and Properties: A Review. Nanomaterials, 13(1), 2. https://doi.org/10.3390/nano13010002