Tuning the Magnetic Properties of Cr2TiC2Tx through Surface Terminations: A Theoretical Study
Abstract
:1. Introduction
2. Calculation Methods and Models
3. Results and Discussion
3.1. The Hubbard U of Cr and Ti Atoms in Cr2TiC2Tx Systems
3.2. The Magnetic Properties of Cr2TiC2On/4F2−n/4 and Cr2TiC2On/4
3.3. Neel Temperature or Curie Temperature of Cr2TiC2On/4F2−n/4
3.4. Impact of n on the Electronic Properties of Cr2TiC2On/4F2−n/4 and Cr2TiC2On/4 Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P.L.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 2012, 16, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Dall’Agnese, Y.; Lukatskaya, M.R.; Cook, K.M.; Taberna, P.-L.; Gogotsi, Y.; Simon, P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 2014, 48, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Zhang, W.B. High throughput screening of M3C2 MXenes for efficient CO2 reduction conversion into hydrocarbon fuels. Nanoscale 2020, 12, 7660–7673. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, S.; Wang, A.; Wang, R.; Wang, C.-K.; Zhang, G.-P.; Chen, L. High magnetoresistance in ultra-thin two-dimensional Cr-based MXenes. Nanoscale 2018, 10, 19492–19497. [Google Scholar] [CrossRef]
- Jiang, X.T.; Kuklin, A.V.; Baev, A.; Ge, Y.Q.; Agren, H.; Zhang, H.; Prasad, P.N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58. [Google Scholar] [CrossRef]
- Jing, Z.; Wang, H.; Feng, X.; Xiao, B.; Ding, Y.; Wu, K.; Cheng, Y. Superior Thermoelectric Performance of Ordered Double Transition Metal MXenes: Cr2TiC2T2 (T = -OH or -F). J. Phys. Chem. Lett. 2019, 10, 5721–5728. [Google Scholar] [CrossRef]
- Yang, J.; Wang, A.; Zhang, S.; Wu, H.; Chen, L. Stability and electronic properties of sulfur terminated two-dimensional early transition metal carbides and nitrides (MXene). Comput. Mater. Sci. 2018, 153, 303–308. [Google Scholar] [CrossRef]
- Yang, J.; Luo, X.; Zhou, X.; Zhang, S.; Liu, J.; Xie, Y.; Lv, L.; Chen, L. Tuning magnetic properties of Cr2M2C3T2 (M = Ti and V) using extensile strain. Computat. Mater. Sci. 2017, 139, 313–319. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, X.; Luo, X.; Zhang, S.; Chen, L. Tunable electronic and magnetic properties of Cr2M’C2T2 (M’ = Ti or V; T=O, OH or F). Appl. Phys. Lett. 2016, 109, 203109. [Google Scholar] [CrossRef]
- Hantanasirisakul, K.; Anasori, B.; Nemsak, S.; Hart, J.L.; Wu, J.; Yang, Y.; Chopdekar, R.V.; Shafer, P.; May, A.F.; Moon, E.J.; et al. Evidence of a magnetic transition in atomically thin Cr2TiC2Tx MXene. Nanoscale Horiz. 2020, 5, 1557–1565. [Google Scholar] [CrossRef]
- Frey, N.C.; Kumar, H.; Anasori, B.; Gogotsi, Y.; Shenoy, V.B. Tuning Noncollinear Spin Structure and Anisotropy in Ferromagnetic Nitride MXenes. ACS Nano 2018, 12, 6319–6325. [Google Scholar] [CrossRef]
- Kumar, H.; Frey, N.C.; Dong, L.; Anasori, B.; Gogotsi, Y.; Shenoy, V.B. Tunable Magnetism and Transport Properties in Nitride MXenes. ACS Nano 2017, 11, 7648–7655. [Google Scholar] [CrossRef]
- Hart, J.L.; Hantanasirisakul, K.; Lang, A.C.; Li, Y.Y.; Mehmood, F.; Pachter, R.; Frenkel, A.I.; Gogotsi, Y.; Taheri, M.L. Multimodal Spectroscopic Study of Surface Termination Evolution in Cr2TiC2Tx MXene. Adv. Mater. Interfaces 2021, 8, 2001789. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, S.; Li, L.; Wang, A.; Zhong, Z.; Chen, L. Rationally designed high-performance spin-filter based on two-dimensional half-metal Cr2NO2. Matter 2019, 5, 1304–1315. [Google Scholar] [CrossRef] [Green Version]
- Si, C.; Zhou, J.; Sun, Z.M. Half-Metallic Ferromagnetism and Surface Functionalization-Induced Metal-Insulator Transition in Graphene-like Two-Dimensional Cr2C Crystals. Acs Appl. Mater. Interfaces 2015, 7, 17510–17515. [Google Scholar] [CrossRef]
- Sun, Q.; Fu, Z.M.; Yang, Z.X. Tunable magnetic and electronic properties of the Cr-based MXene (Cr2C) with functional groups and doping. J. Mag. Mag. Mater. 2020, 514, 167141. [Google Scholar] [CrossRef]
- Ma, X.F.; Mi, W.B. Surface Functionalization Tailored Electronic Structure and Magnetic Properties of Two-Dimensional CrC2 Monolayers. J. Phys. Chem. C 2020, 124, 3095–3106. [Google Scholar] [CrossRef]
- He, J.J.; Ding, G.Q.; Zhong, C.Y.; Li, S.; Li, D.F.; Zhang, G. Cr2TiC2-based double MXenes: Novel 2D bipolar antiferromagnetic semiconductor with gate-controllable spin orientation toward antiferromagnetic spintronics. Nanoscale 2019, 11, 356–364. [Google Scholar] [CrossRef]
- Frey, N.C.; Bandyopadhyay, A.; Kumar, H.; Anasori, B.; Gogotsi, Y.; Shenoy, V.B. Surface-Engineered MXenes: Electric Field Control of Magnetism and Enhanced Magnetic Anisotropy. ACS Nano 2019, 13, 2831–2839. [Google Scholar] [CrossRef]
- He, J.J.; Lyu, P.B.; Sun, L.Z.; Garcia, A.M.; Nachtigall, P. High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes. J. Mater. Chem. C 2016, 4, 6500. [Google Scholar] [CrossRef]
- Serrano, G.; Poggini, L.; Briganti, M.; Sorrentino, A.L.; Cucinotta, G.; Malavolti, L.; Cortigiani, B.; Otero, E.; Sainctavit, P.; Loth, S.; et al. Quantum dynamics of a single molecule magnet on superconducting Pb(111). Nat. Mater. 2020, 19, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Je, M.; Lee, Y.; Chung, Y.C. Structural stability and electronic properties of multi-functionalized two-dimensional chromium carbides. Thin Solid Films 2016, 619, 131–136. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab-initio molecular-dynamics simulation of the liquid-metal amorphous semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, V.I.; Aryasetiawan, F.; Lichtenstein, A.I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA C U method. J. Phys. Condens. Matter 1997, 9, 767–808. [Google Scholar] [CrossRef]
- Cococcioni, M.; de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 2005, 71, 035105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.G.; Cui, Z.; Sa, B.S.; Miao, N.H.; Zhou, J.; Sun, Z.M. Computational design of double transition metal MXenes with intrinsic magnetic properties. Nanoscale Horiz. 2022, 7, 276. [Google Scholar] [CrossRef]
- Anderson, P.W. Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 1950, 79, 350–356. [Google Scholar] [CrossRef]
- Li, S.; He, J.J.; Grajciar, L.; Nachtigall, P. Intrinsic valley polarization in 2D magnetic MXenes: Surface engineering induced spin-valley coupling. J. Mater. Chem. C 2021, 9, 11132–11141. [Google Scholar] [CrossRef]
- Caneschi, A.; Gatteschi, D.; Totti, F. Molecular magnets and surfaces: A promising marriage. A DFT insight. Coord. Chem. Rev. 2015, 289, 357–378. [Google Scholar] [CrossRef]
- Zhuang, H.L.; Kent, P.R.C.; Hennig, R.G. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnetFe3GeTe2. Phys. Rev. B 2016, 93, 134407. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ren, X.; Xie, J.H.; Cheng, B.; Liu, W.K.; An, T.Y.; Qin, H.W.; Hu, J.F. Magnetic switches via electric field in BN nanoribbons. Appl. Surf. Sci. 2019, 480, 300–307. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, S.; Ji, J.; Wei, S. Adsorption Activities of O, OH, F and Au on Two-Dimensional Ti2C and Ti3C2 Surfaces. Acta Phys.Chim. Sin. 2015, 31, 369–376. [Google Scholar]
n | MAE (μeV) | J1 (meV) | J2 (meV) | J3 (meV) | TN/TC (K) | ||
---|---|---|---|---|---|---|---|
0 | C1 | AFM1 | 61 | 6.61 | −0.70 | −2.00 | 49 |
1 | C1 | AFM1 | 68 | 5.00 | −0.31 | −0.83 | 47 |
2 | C1 | AFM1 | 90 | 2.78 | −1.27 | 0.55 | 99 |
C2 | AFM1 | 51 | 2.67 | −1.27 | 0.39 | 92 | |
C3 | AFM1 | 36 | 4.15 | −0.88 | −0.26 | 77 | |
3 | C1 | AFM1 | 51 | 4.59 | −0.55 | −0.39 | 69 |
C2 | AFM1 | 1 | 2.16 | −0.76 | 0.27 | 62 | |
C3 | AFM1 | 42 | 2.33 | −1.32 | 0.66 | 99 | |
4 | C1 | AFM1 | −5 | 5.15 | −0.71 | 0.03 | 92 |
C2 | AFM1 | 29 | 2.51 | −0.58 | 0.02 | 55 | |
C3 | AFM1 | 29 | 2.44 | −1.05 | 0.45 | 84 | |
C4 | AFM1 | −81 | 1.59 | −0.12 | −0.15 | 17 | |
C5 | AFM1 | −104 | 1.35 | −0.02 | −0.19 | 10 | |
C6 | AFM1 | −28 | 1.61 | −0.45 | 0.21 | 40 | |
5 | C1 | FM | −64 | 2.83 | −0.20 | 0.24 | 47 |
C2 | FM | −4 | 1.89 | 0.33 | 0.07 | 10 | |
C3 | FM | −3 | 2.13 | −0.01 | 0.02 | 25 | |
6 | C1 | FM | −106 | 2.25 | 0.04 | 0.06 | 25 |
C2 | AFM1 | −114 | 2.32 | −0.06 | −0.11 | 25 | |
C3 | FM | −165 | 2.28 | 0.42 | 0.09 | 10 | |
7 | C1 | FM | −260 | 3.13 | 0.37 | 0.74 | 40 |
8 | C1 | FM | −404 | 3.76 | 2.19 | −0.49 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhou, Y.; Liang, X.; Wang, Y.; Wang, T.; Yang, J.; Lv, L. Tuning the Magnetic Properties of Cr2TiC2Tx through Surface Terminations: A Theoretical Study. Nanomaterials 2022, 12, 4364. https://doi.org/10.3390/nano12244364
Zhang S, Zhou Y, Liang X, Wang Y, Wang T, Yang J, Lv L. Tuning the Magnetic Properties of Cr2TiC2Tx through Surface Terminations: A Theoretical Study. Nanomaterials. 2022; 12(24):4364. https://doi.org/10.3390/nano12244364
Chicago/Turabian StyleZhang, Shaozheng, Yuanting Zhou, Xing Liang, Yulin Wang, Tong Wang, Jianhui Yang, and Liang Lv. 2022. "Tuning the Magnetic Properties of Cr2TiC2Tx through Surface Terminations: A Theoretical Study" Nanomaterials 12, no. 24: 4364. https://doi.org/10.3390/nano12244364
APA StyleZhang, S., Zhou, Y., Liang, X., Wang, Y., Wang, T., Yang, J., & Lv, L. (2022). Tuning the Magnetic Properties of Cr2TiC2Tx through Surface Terminations: A Theoretical Study. Nanomaterials, 12(24), 4364. https://doi.org/10.3390/nano12244364