Chitosan-Mediated Environment-Friendly Synthesis of Gold Nanoparticles with Enhanced Photonic Reactivity
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. AuNP Preparation
2.3. Sample Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sui, N.; Gao, H.; Zhu, J.; Jiang, H.; Bai, Q.; Xiao, H.; Liu, M.; Wang, L.; Yu, W.W. Shape- and size-dependences of gold nanostructures on the electrooxidation of methanol under visible light irradiation. Nanoscale 2019, 11, 18320–18328. [Google Scholar] [CrossRef] [PubMed]
- Petryayeva, E.; Krull, U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xianyu, Y.; Jiang, X. Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis. Acc. Chem. Res. 2017, 50, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Yaghoobi, F.; Karimi Shervedani, R.; Torabi, M.; Kefayat, A.; Ghahremani, F.; Farzadniya, A. Therapeutic effect of deferrioxamine conjugated to PEGylated gold nanoparticles and complexed with Mn(II) beside the CT scan and MRI diagnostic studies. Colloids Surf. Physicochem. Eng. Asp. 2019, 583, 123917. [Google Scholar] [CrossRef]
- Ursu, E.-L.; Doroftei, F.; Peptanariu, D.; Pinteala, M.; Rotaru, A. DNA-assisted decoration of single-walled carbon nanotubes with gold nanoparticles for applications in surface-enhanced Raman scattering imaging of cells. J. Nanoparticle Res. 2017, 19, 181. [Google Scholar] [CrossRef]
- Si, P.; Razmi, N.; Nur, O.; Solanki, S.; Pandey, C.M.; Gupta, R.K.; Malhotra, B.D.; Willander, M.; de la Zerda, A. Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv. 2021, 3, 2679–2698. [Google Scholar] [CrossRef] [PubMed]
- Huo, S.; Gong, N.; Jiang, Y.; Chen, F.; Guo, H.; Gan, Y.; Wang, Z.; Herrmann, A.; Liang, X.-J. Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation. Sci. Adv. 2019, 5, eaaw6264. [Google Scholar] [CrossRef]
- Lupusoru, R.V.; Pricop, D.A.; Uritu, C.M.; Arvinte, A.; Coroaba, A.; Esanu, I.; Zaltariov, M.F.; Silion, M.; Stefanescu, C.; Pinteala, M. Effect of TAT-DOX-PEG irradiated gold nanoparticles conjugates on human osteosarcoma cells. Sci. Rep. 2020, 10, 6591. [Google Scholar] [CrossRef]
- Pissuwan, D.; Niidome, T.; Cortie, M.B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release 2011, 149, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Rajamanikandan, R.; Lakshmi, A.D.; Ilanchelian, M. Smart phone assisted, rapid, simplistic, straightforward and sensitive biosensing of cysteine over other essential amino acids by β-cyclodextrin functionalized gold nanoparticles as a colorimetric probe. New J. Chem. 2020, 44, 12169–12177. [Google Scholar] [CrossRef]
- Hu, J.; Sanz-Rodríguez, F.; Rivero, F.; Rodríguez, E.M.; Torres, R.A.; Ortgies, D.H.; Solé, J.G.; Alfonso, F.; Jaque, D. Gold nanoshells: Contrast agents for cell imaging by cardiovascular optical coherence tomography. Nano Res. 2018, 11, 676–685. [Google Scholar] [CrossRef]
- Eustis, S.; El-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.B.; Tsalu, P.V.; Ha, J.W. Shape Effect on the Refractive Index Sensitivity at Localized Surface Plasmon Resonance Inflection Points of Single Gold Nanocubes with Vertices. Sci. Rep. 2019, 9, 13635. [Google Scholar] [CrossRef]
- Murray, W.A.; Barnes, W.L. Plasmonic Materials. Adv. Mater. 2007, 19, 3771–3782. [Google Scholar] [CrossRef]
- Bathula, B.; Koutavarapu, R.; Shim, J.; Yoo, K. Facile one-pot synthesis of gold/tin oxide quantum dots for visible light catalytic degradation of methylene blue: Optimization of plasmonic effect. J. Alloys Compd. 2020, 812, 152081. [Google Scholar] [CrossRef]
- Lin, C.; Fu, J.; Liu, S. Facile preparation of Au nanoparticle-embedded polydopamine hollow microcapsule and its catalytic activity for the reduction of methylene blue. J. Macromol. Sci. Part A 2019, 56, 1104–1113. [Google Scholar] [CrossRef]
- Springer, V.; Segundo, M.A.; Centurión, M.E.; Avena, M. Fully-programmable synthesis of sucrose-mediated gold nanoparticles for detection of ciprofloxacin. Mater. Chem. Phys. 2019, 238, 121917. [Google Scholar] [CrossRef]
- Liu, K.; He, Z.; Curtin, J.F.; Byrne, H.J.; Tian, F. A novel, rapid, seedless, in situ synthesis method of shape and size controllable gold nanoparticles using phosphates. Sci. Rep. 2019, 9, 7421. [Google Scholar] [CrossRef]
- Ma, X.; Song, S.; Kim, S.; Kwon, M.; Lee, H.; Park, W.; Sim, S.J. Single gold-bridged nanoprobes for identification of single point DNA mutations. Nat. Commun. 2019, 10, 836. [Google Scholar] [CrossRef]
- Pal, A.; Esumi, K.; Pal, T. Preparation of nanosized gold particles in a biopolymer using UV photoactivation. J. Colloid Interface Sci. 2005, 288, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Banihashem, S.; Nezhati, M.N.; Panahi, H.A. Synthesis of chitosan-grafted-poly(N-vinylcaprolactam) coated on the thiolated gold nanoparticles surface for controlled release of cisplatin. Carbohydr. Polym. 2020, 227, 115333. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, Y.; Li, Z.; Deng, Y.; Zhao, X.; Xia, Y. Facile synthesis of chitosan-gold nanocomposite and its application for exclusively sensitive detection of Ag+ ions. Carbohydr. Polym. 2019, 226, 115290. [Google Scholar] [CrossRef] [PubMed]
- Abrica-González, P.; Zamora-Justo, J.A.; Sotelo-López, A.; Vázquez-Martínez, G.R.; Balderas-López, J.A.; Muñoz-Diosdado, A.; Ibáñez-Hernández, M. Gold nanoparticles with chitosan, N-acylated chitosan, and chitosan oligosaccharide as DNA carriers. Nanoscale Res. Lett. 2019, 14, 258. [Google Scholar] [CrossRef] [PubMed]
- Gubitosa, J.; Rizzi, V.; Fini, P.; Del Sole, R.; Lopedota, A.; Laquintana, V.; Denora, N.; Agostiano, A.; Cosma, P. Multifunctional green synthetized gold nanoparticles/chitosan/ellagic acid self-assembly: Antioxidant, sun filter and tyrosinase-inhibitor properties. Mater. Sci. Eng. C 2020, 106, 110170. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, J.; Cai, J.; Zhong, L.; Ren, G.; Ma, Q. One pot synthesis of gold nanoparticles using chitosan with varying degree of deacetylation and molecular weight. Carbohydr. Polym. 2017, 178, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yang, X. Synthesis of Chitosan-Stabilized Gold Nanoparticles in the Absence/Presence of Tripolyphosphate. Biomacromolecules 2004, 5, 2340–2346. [Google Scholar] [CrossRef]
- Guibal, E. Heterogeneous catalysis on chitosan-based materials: A review. Prog. Polym. Sci. 2005, 30, 71–109. [Google Scholar] [CrossRef]
- Lipșa, F.-D.; Ursu, E.-L.; Ursu, C.; Ulea, E.; Cazacu, A. Evaluation of the Antifungal Activity of Gold–Chitosan and Carbon Nanoparticles on Fusarium oxysporum. Agronomy 2020, 10, 1143. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef]
- Moulder, J.F.; Chastain, J. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Division, Perkin-Elmer Corp.: Eden Prairie, MN, USA, 1992; ISBN 978-0-9627026-2-4. [Google Scholar]
- Zhang, J.; Chen, G.; Chaker, M.; Rosei, F.; Ma, D. Gold nanoparticle decorated ceria nanotubes with significantly high catalytic activity for the reduction of nitrophenol and mechanism study. Appl. Catal. B Environ. 2013, 132–133, 107–115. [Google Scholar] [CrossRef]
- Kemp, M.M.; Kumar, A.; Mousa, S.; Park, T.-J.; Ajayan, P.; Kubotera, N.; Mousa, S.A.; Linhardt, R.J. Synthesis of Gold and Silver Nanoparticles Stabilized with Glycosaminoglycans Having Distinctive Biological Activities. Biomacromolecules 2009, 10, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-L.; Flynn, N.T. X-ray photoelectron spectroscopy. In Handbook of Applied Solid State Spectroscopy; Vij, D.R., Ed.; Springer: Boston, MA, USA, 2006; pp. 485–507. ISBN 978-0-387-37590-8. [Google Scholar]
- Beamson, G.; Briggs, D. High resolution monochromated X-ray photoelectron spectroscopy of organic polymers: A comparison between solid state data for organic polymers and gas phase data for small molecules. Mol. Phys. 1992, 76, 919–936. [Google Scholar] [CrossRef]
- Yap, W.F.; Yunus, W.M.M.; Talib, Z.A.; Yusof, N.A. X-ray photoelectron spectroscopy and atomic force microscopy studies on crosslinked chitosan thin film. Int. J. Phys. Sci. 2011, 6, 2744–2749. [Google Scholar] [CrossRef]
- Lam, K.F.; Yeung, K.L.; McKay, G. A Rational Approach in the Design of Selective Mesoporous Adsorbents. Langmuir 2006, 22, 9632–9641. [Google Scholar] [CrossRef] [PubMed]
- Lall, A.; Kamdem Tamo, A.; Doench, I.; David, L.; de Oliveira, P.N.; Gorzelanny, C.; Osorio-Madrazo, A. Nanoparticles and Colloidal Hydrogels of Chitosan–Caseinate Polyelectrolyte Complexes for Drug-Controlled Release Applications. Int. J. Mol. Sci. 2020, 21, 5602. [Google Scholar] [CrossRef] [PubMed]
- Ssekatawa, K.; Byarugaba, D.K.; Wampande, E.M.; Moja, T.N.; Nxumalo, E.; Maaza, M.; Sackey, J.; Ejobi, F.; Kirabira, J.B. Isolation and characterization of chitosan from Ugandan edible mushrooms, Nile perch scales and banana weevils for biomedical applications. Sci. Rep. 2021, 11, 4116. [Google Scholar] [CrossRef]
- Mauricio-Sánchez, R.A.; Salazar, R.; Luna-Bárcenas, J.G.; Mendoza-Galván, A. FTIR spectroscopy studies on the spontaneous neutralization of chitosan acetate films by moisture conditioning. Vib. Spectrosc. 2018, 94, 1–6. [Google Scholar] [CrossRef]
- Balau, L.; Lisa, G.; Popa, M.I.; Tura, V.; Melnig, V. Physico-chemical properties of Chitosan films. Cent. Eur. J. Chem. 2004, 2, 638–647. [Google Scholar] [CrossRef]
- Gârlea, A.; Melnig, V.; Popa, M.I. Nanostructured chitosan–surfactant matrices as polyphenols nanocapsules template with zero order release kinetics. J. Mater. Sci. Mater. Med. 2010, 21, 1211–1223. [Google Scholar] [CrossRef]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.M.; Argüelles-Monal, W.; Desbrières, J.; Rinaudo, M. An infrared investigation in relation with chitin and chitosan characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Xu, Y.X.; Kim, K.M.; Hanna, M.A.; Nag, D. Chitosan–starch composite film: Preparation and characterization. Ind. Crops Prod. 2005, 21, 185–192. [Google Scholar] [CrossRef]
- Ahmed, S.; Ikram, S. Chitosan and gelatin based biodegradable packaging films with UV-light protection. J. Photochem. Photobiol. B 2016, 163, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ge, X.; Lu, Y.; Dong, S.; Zhao, Y.; Zeng, M. Effects of chitosan molecular weight and degree of deacetylation on the properties of gelatine-based films. Food Hydrocoll. 2012, 26, 311–317. [Google Scholar] [CrossRef]
- Hongsa, N.; Thinbanmai, T.; Luesakul, U.; Sansanaphongpricha, K.; Muangsin, N. A novel modified chitosan/collagen coated-gold nanoparticles for 5-fluorouracil delivery: Synthesis, characterization, in vitro drug release studies, anti-inflammatory activity and in vitro cytotoxicity assay. Carbohydr. Polym. 2022, 277, 118858. [Google Scholar] [CrossRef] [PubMed]
- Doyen, M.; Goole, J.; Bartik, K.; Bruylants, G. Amino acid induced fractal aggregation of gold nanoparticles: Why and how. J. Colloid Interface Sci. 2016, 464, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.; Liu, X.; Qin, L.; Zhang, C.; Zeng, G.; Huang, D.; Cheng, M.; Xu, P.; Yi, H.; Huang, D. Chitosan-wrapped gold nanoparticles for hydrogen-bonding recognition and colorimetric determination of the antibiotic kanamycin. Microchim. Acta 2017, 184, 2097–2105. [Google Scholar] [CrossRef]
- Phan, T.T.V.; Phan, D.T.; Cao, X.T.; Huynh, T.-C.; Oh, J. Roles of Chitosan in Green Synthesis of Metal Nanoparticles for Biomedical Applications. Nanomaterials 2021, 11, 273. [Google Scholar] [CrossRef] [PubMed]
- Neagu, A.; Curecheriu, L.; Airimioaei, M.; Cazacu, A.; Cernescu, A.; Mitoseriu, L. Impedance spectroscopy characterization of relaxation mechanisms in gold–chitosan nanocomposites. Compos. Part B Eng. 2015, 71, 210–217. [Google Scholar] [CrossRef]
- Dos Santos, D.S.; Goulet, P.J.G.; Pieczonka, N.P.W.; Oliveira, O.N.; Aroca, R.F. Gold Nanoparticle Embedded, Self-Sustained Chitosan Films as Substrates for Surface-Enhanced Raman Scattering. Langmuir 2004, 20, 10273–10277. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, K.; Mariadoss, A.V.A.; Sathiyaseelan, A.; Wang, M.-H. Synthesis and characterization of nano-chitosan capped gold nanoparticles with multifunctional bioactive properties. Int. J. Biol. Macromol. 2020, 165, 747–757. [Google Scholar] [CrossRef]
- Zuber, A.; Purdey, M.; Schartner, E.; Forbes, C.; van der Hoek, B.; Giles, D.; Abell, A.; Monro, T.; Ebendorff-Heidepriem, H. Detection of gold nanoparticles with different sizes using absorption and fluorescence based method. Sens. Actuators B Chem. 2016, 227, 117–127. [Google Scholar] [CrossRef]
- Marinakos, S.M.; Chen, S.; Chilkoti, A. Plasmonic Detection of a Model Analyte in Serum by a Gold Nanorod Sensor. Anal. Chem. 2007, 79, 5278–5283. [Google Scholar] [CrossRef] [PubMed]
- Nath, N.; Chilkoti, A. Noble Metal Nanoparticle Biosensors. In Radiative Decay Engineering; Geddes, C.D., Lakowicz, J.R., Eds.; Topics in Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2005; pp. 353–380. ISBN 978-0-387-27617-5. [Google Scholar]
- Nath, N.; Chilkoti, A. Label Free Colorimetric Biosensing Using Nanoparticles. J. Fluoresc. 2004, 14, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Cazacu, A.; Curecheriu, L.; Neagu, A.; Padurariu, L.; Cernescu, A.; Lisiecki, I.; Mitoseriu, L. Tunable gold-chitosan nanocomposites by local field engineering. Appl. Phys. Lett. 2013, 102, 222903. [Google Scholar] [CrossRef]
- Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Orendorff, C.J.; Sau, T.K.; Murphy, C.J. Shape-Dependent Plasmon-Resonant Gold Nanoparticles. Small 2006, 2, 636–639. [Google Scholar] [CrossRef]
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar] [CrossRef] [PubMed]
- Englebienne, P.; Hoonacker, A.V.; Verhas, M. High-throughput screening using the surface plasmon resonance effect of colloidal gold nanoparticles. Analyst 2001, 126, 1645–1651. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chen, C.-P.; Wu, T.-H.; Yang, C.-H.; Lin, C.-W.; Chen, C.-Y. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. Nanomaterials 2019, 9, 861. [Google Scholar] [CrossRef] [PubMed]
Sample | Chitosan | Gold Concentration (mM) |
---|---|---|
P 0.06 | PG | 0.06 |
P 0.12 | PG | 0.12 |
P 0.18 | PG | 0.18 |
P 0.24 | PG | 0.24 |
P 0.30 | PG | 0.30 |
M 0.06 | MMW | 0.06 |
M 0.12 | MMW | 0.12 |
M 0.18 | MMW | 0.18 |
M 0.24 | MMW | 0.24 |
M 0.30 | MMW | 0.30 |
L 0.06 | LMW | 0.06 |
L 0.12 | LMW | 0.12 |
L 0.18 | LMW | 0.18 |
L 0.24 | LMW | 0.24 |
L 0.30 | LMW | 0.30 |
Sample | Wavenumber (cm−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
PG | 1653 | 1557 | 1419 | 1376 | 1317 | 1154 | 1063 | 1026 | 892 |
P 0.12 | 1629 | 1523 | 1414 | 1378 | 1315 | 1152 | 1070 | 1027 | 894 |
MMW | 1647 | 1567 | 1419 | 1375 | 1312 | 1150 | 1061 | 1025 | 893 |
M 0.12 | 1630 | 1555 | 1412 | 1378 | 1315 | 1151 | 1068 | 1031 | 895 |
LMW | 1650 | 1568 | 1418 | 1374 | 1316 | 1150 | 1061 | 1025 | 893 |
L 0.12 | 1635 | 1546 | 1412 | 1381 | 1317 | 1152 | 1071 | 1032 | 894 |
Sample | Wavenumber (cm−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
PG | 1653 | 1557 | 1419 | 1376 | 1317 | 1152 | 1063 | 1026 | 892 |
P 0.06 | 1634 | 1526 | 1416 | 1379 | 1316 | 1153 | 1065 | 1026 | 885 |
P 0.12 | 1629 | 1523 | 1414 | 1378 | 1315 | 1152 | 1070 | 1027 | 894 |
P 0.18 | 1625 | 1515 | 1413 | 1375 | 1314 | 1152 | 1062 | 1027 | 895 |
P 0.24 | 1619 | 1513 | 1412 | 1374 | 1313 | 1149 | 1061 | 1026 | 897 |
P 0.30 | 1617 | 1509 | 1404 | 1372 | 1311 | 1148 | 1060 | 1026 | 894 |
Sample | Average Size (nm) | Average Zeta Potential (mV) | ||||
---|---|---|---|---|---|---|
0 Month | 6 Months | 12 Months | 0 Month | 6 Months | 12 Months | |
P 0.06 | 69.9 ± 5.7 | 70.2 ± 6.5 | 69.7 ± 6.2 | 47.2 ± 3.6 | 39.6 ± 3.4 | 36.4 ± 2.7 |
M 0.06 | 39.4 ± 3.1 | 76.2 ± 8.4 | 47.3 ± 5.9 | 42.4 ± 3.1 | 34.9 ± 2.9 | 35.6 ± 3.2 |
L 0.06 | 30.6 ± 4.7 | 83.3 ± 7.1 | 68.8 ± 6.3 | 40.4 ± 2.9 | 41.1 ± 3.7 | 35.2 ± 4.1 |
P 0.12 | 80.5 ± 9.2 | 77.9 ± 8.6 | 75.0 ± 8.9 | 49.7 ± 4.3 | 59.6 ± 4.8 | 28.8 ± 3.6 |
M 0.12 | 53.1 ± 5.4 | 63.7 ± 5.9 | 86.4 ± 7.7 | 41.5 ± 3.7 | 32.7 ± 3.1 | 28.9 ± 3.1 |
L 0.12 | 67.9 ± 6.1 | 76.1 ± 6.9 | 70.1 ± 7.3 | 37.8 ± 3.1 | 32.9 ± 3.9 | 31.5 ± 3.8 |
P 0.18 | 90.9 ± 7.8 | 80.6 ± 7.1 | 73.8 ± 6.9 | 41.2 ± 3.8 | 32.2 ± 2.8 | 26.3 ± 2.2 |
M 0.18 | 101.2 ± 9.4 | 82.5 ± 8.6 | 89.4 ± 9.3 | 39.8 ± 2.6 | 33.8 ± 3.6 | 13.1 ± 1.7 |
L 0.18 | 83.6 ± 6.8 | 102.0 ± 9.2 | 130.0 ± 14.9 | 38.8 ± 3.9 | 36.9 ± 3.2 | 23.4 ± 2.6 |
P 0.24 | 159.0 ± 22.4 | - | - | 29.9 ± 3.2 | - | - |
M 0.24 | 126.6 ± 14.8 | - | - | 24.8 ± 2.7 | - | - |
L 0.24 | 137.0 ± 23.1 | - | - | 20.3 ± 1.8 | - | - |
P 0.30 | 220.0 ± 29.9 | - | - | 5.11 ± 0.7 | - | - |
M 0.30 | 169.0 ± 20.7 | - | - | 14.8 ± 1.1 | - | - |
L 0.30 | 153.0 ± 17.6 | - | - | 11.3 ± 0.9 | - | - |
Chitosan | Gold Concentration (mM) | |||
---|---|---|---|---|
Wavelength (nm) | 0.06 | 0.12 | 0.18 | 0.24 |
PG | 530 | 543 | 548 | 556 |
MMW | 536 | 553 | 554 | 552 |
LMW | 536 | 552 | 553 | 555 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cazacu, A.; Dobromir, M.; Chiruță, C.; Ursu, E.-L. Chitosan-Mediated Environment-Friendly Synthesis of Gold Nanoparticles with Enhanced Photonic Reactivity. Nanomaterials 2022, 12, 4186. https://doi.org/10.3390/nano12234186
Cazacu A, Dobromir M, Chiruță C, Ursu E-L. Chitosan-Mediated Environment-Friendly Synthesis of Gold Nanoparticles with Enhanced Photonic Reactivity. Nanomaterials. 2022; 12(23):4186. https://doi.org/10.3390/nano12234186
Chicago/Turabian StyleCazacu, Ana, Marius Dobromir, Ciprian Chiruță, and Elena-Laura Ursu. 2022. "Chitosan-Mediated Environment-Friendly Synthesis of Gold Nanoparticles with Enhanced Photonic Reactivity" Nanomaterials 12, no. 23: 4186. https://doi.org/10.3390/nano12234186
APA StyleCazacu, A., Dobromir, M., Chiruță, C., & Ursu, E.-L. (2022). Chitosan-Mediated Environment-Friendly Synthesis of Gold Nanoparticles with Enhanced Photonic Reactivity. Nanomaterials, 12(23), 4186. https://doi.org/10.3390/nano12234186