Efficient Optical Modulation of Exciton State Population in Monolayer MoS2 at Room Temperature
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of Monolayer MoS2
2.2. Characterization and Measurements
3. Results and Discussion
3.1. Characterizations of Monolayer MoS2
3.2. Pump Power Dependent PL Properties
3.3. Proposed Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sie, E.J.; McIver, J.W.; Lee, Y.-H.; Fu, L.; Kong, J.; Gedik, N. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 2015, 14, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Bie, Y.-Q.; Grosso, G.; Heuck, M.; Furchi, M.M.; Cao, Y.; Zheng, J.; Bunandar, D.; Navarro-Moratalla, E.; Zhou, L.; Efetov, D.K.; et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 2017, 12, 1124–1129. [Google Scholar] [CrossRef] [PubMed]
- De La Barrera, S.C.; Sinko, M.R.; Gopalan, D.P.; Sivadas, N.; Seyler, K.L.; Watanabe, K.; Taniguchi, T.; Tsen, A.W.; Xu, X.; Xiao, D.; et al. Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 2018, 9, 1427. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Ma, H.; Wang, J.; Zhou, X.; Yu, W.; Ma, C.; Wu, M.; Gao, P.; Liu, K.; Yu, D. Giant pattern evolution in third-harmonic generation of strained monolayer WS2 at two-photon excitonic resonance. Nano Res. 2020, 13, 3235–3240. [Google Scholar] [CrossRef]
- Hu, G.; Hong, X.; Wang, K.; Wu, J.; Xu, H.-X.; Zhao, W.; Liu, W.; Zhang, S.; Garcia-Vidal, F.; Wang, B.; et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photon. 2019, 13, 467–472. [Google Scholar] [CrossRef]
- Wu, F.; Das Sarma, S. Collective Excitations of Quantum Anomalous Hall Ferromagnets in Twisted Bilayer Graphene. Phys. Rev. Lett. 2020, 124, 046403. [Google Scholar] [CrossRef]
- Wu, L.; Cong, C.; Yang, W.; Chen, Y.; Shao, Y.; Do, T.T.H.; Wen, W.; Feng, S.; Zou, C.; Zhang, H.; et al. Observation of strong valley magnetic response in monolayer transition metal dichalcogenide alloys of Mo0.5W0.5Se2 and Mo0.5W0.5Se2/WS2 heterostructures. ACS Nano 2021, 15, 8397–8406. [Google Scholar] [CrossRef]
- Du, L.; Hasan, T.; Castellanos-Gomez, A.; Liu, G.-B.; Yao, Y.; Lau, C.N.; Sun, Z. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 2021, 3, 193–206. [Google Scholar] [CrossRef]
- Gao, F.; Xue, H.; Yang, Z.; Lai, K.; Yu, Y.; Lin, X.; Chong, Y.; Shvets, G.; Zhang, B. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 2018, 14, 140–144. [Google Scholar] [CrossRef]
- Chen, Y.C.; Sun, M.T. Two-dimensional WS2/MoS2 heterostructures: Properties and applications. Nanoscale 2021, 13, 5594–5619. [Google Scholar] [CrossRef]
- Tan, C.L.; Luo, Z.M.; Chaturvedi, A.; Cai, Y.Q.; Du, Y.H.; Gong, Y.; Huang, Y.; Lai, Z.C.; Zhang, X.; Zheng, L.R.; et al. Preparation of high-hercentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1705509. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.H.; Kim, J.; Utama, M.I.B.; Regan, E.C.; Kleemann, H.; Cai, H.; Shen, Y.X.; Shinner, M.J.; Sengupta, A.; Watanabe, K.; et al. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures. Science 2018, 360, 893–896. [Google Scholar] [CrossRef]
- Samadi, M.; Sarikhani, N.; Zirak, M.; Zhang, H.; Zhang, H.L.; Moshfegh, A.Z. Group 6 transition metal dichalcogenide nanomaterials: Synthesis, applications and future perspectives. Nanoscale Horiz. 2018, 3, 90–204. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, H.; Li, H.; Lin, S.; Ding, W.; Zhu, X.G.; Sheng, Z.G.; Wang, H.; Zhu, X.B.; Sun, Y.P. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 2020, 30, 1910302. [Google Scholar]
- Bhunia, H.; Pal, A.J. Band-edges and band-gap in few-layered transition metal dichalcogenides. J. Phys. D Appl. Phys. 2018, 51, 215102. [Google Scholar] [CrossRef]
- Roldán, R.; López-Sancho, M.P.; Guinea, F.; Cappelluti, E.; Silva-Guillén, J.A.; Ordejón, P. Momentum dependence of spin–orbit interaction effects in single-layer and multi-layer transition metal dichalcogenides. 2D Mater. 2014, 1, 034003. [Google Scholar] [CrossRef]
- Kośmider, K.; Fernández-Rossier, J. Electronic properties of the MoS2-WS2 heterojunction. Phys. Rev. B 2013, 87, 075451. [Google Scholar] [CrossRef]
- Dimple, N.J.; Ahammed, R.; Rawat, A.; Mohanta, M.K.; De Sarkar, A. Valley drift and valley current modulation in strained monolayer MoS2. Phys. Rev. B 2019, 100, 165413. [Google Scholar]
- Chittari, B.L.; Chen, G.; Zhang, Y.; Wang, F.; Jung, J. Gate-Tunable Topological Flat Bands in Trilayer Graphene Boron-Nitride Moiré Superlattices. Phys. Rev. Lett. 2019, 122, 016401. [Google Scholar] [CrossRef]
- Kang, J.; Vafek, O. Strong Coupling Phases of Partially Filled Twisted Bilayer Graphene Narrow Bands. Phys. Rev. Lett. 2019, 122, 246401. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Naik, M.H.; Xie, J.; Li, X.; Wang, J.; Regan, E.; Wang, D.; Zhao, W.; Zhao, S.; et al. Crommie Imaging moire flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 2021, 20, 945–950. [Google Scholar] [CrossRef]
- Li, Z.; Wang, T.; Lu, Z.; Jin, C.; Chen, Y.; Meng, Y.; Lian, Z.; Taniguchi, T.; Watanabe, K.; Zhang, S.; et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2. Nat. Commun. 2018, 9, 3719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Wang, Z.; Watanabe, K.; Taniguchi, T.; Vafek, O.; Li, J.I.A. Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening. Science 2021, 371, 1261–1265. [Google Scholar] [CrossRef] [PubMed]
- Lundt, N.; Klembt, S.; Cherotchenko, E.; Betzold, S.; Iff, O.; Nalitov, A.; Klaas, M.; Dietrich, C.P.; Kavokin, A.; Hofling, S.; et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat. Commun. 2016, 7, 13328. [Google Scholar] [CrossRef]
- Cui, Q.H.; Peng, Q.; Luo, Y.; Jiang, Y.; Yan, Y.; Wei, C.; Shuai, Z.; Sun, C.; Yao, J.; Zhao, Y.S. Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion. Sci. Adv. 2018, 4, eaap9861. [Google Scholar] [CrossRef] [PubMed]
- Goryca, M.; Li, J.; Stier, A.V.; Taniguchi, T.; Watanabe, K.; Courtade, E.; Shree, S.; Robert, C.; Urbaszek, B.; Marie, X.; et al. Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields. Nat. Commun. 2019, 10, 4172. [Google Scholar] [CrossRef]
- Lo, T.W.; Zhang, Q.; Qiu, M.; Guo, X.; Meng, Y.; Zhu, Y.; Xiao, J.J.; Jin, W.; Leung, C.W.; Lei, D. Thermal Redistribution of Exciton Population in Monolayer Transition Metal Dichalcogenides Probed with Plasmon–Exciton Coupling Spectroscopy. ACS Photon. 2019, 6, 411–421. [Google Scholar] [CrossRef]
- Yao, Q.-F.; Cai, J.; Tong, W.-Y.; Gong, S.-J.; Wang, J.-Q.; Wan, X.; Duan, C.-G.; Chu, J.H. Manipulation of the large Rashba spin splitting in polar two-dimensional transition-metal dichalcogenides. Phys. Rev. B 2017, 95, 165401. [Google Scholar] [CrossRef]
- Wang, L.; Nilsson, Z.N.; Tahir, M.; Chen, H.; Sambur, J.B. Influence of the Substrate on the Optical and Photo-electrochemical Properties of Monolayer MoS2. ACS Appl. Mater. Interfaces 2020, 12, 15034–15042. [Google Scholar] [CrossRef]
- Luo, Y.; Shepard, G.D.; Ardelean, J.V.; Rhodes, D.A.; Kim, B.; Barmak, K.; Hone, J.C.; Strauf, S. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 2018, 13, 1137–1142. [Google Scholar] [CrossRef]
- Hien, N.D.; Nguyen, C.V.; Hieu, N.N.; Kubakaddi, S.S.; Duque, C.A.; Mora-Ramos, M.E.; Dinh, L.; Bich, T.N.; Phuc, H.V. Magneto-optical transport properties of monolayer transition metal dichalcogenides. Phys. Rev. B 2020, 101, 045424. [Google Scholar] [CrossRef]
- Shimazaki, Y.; Schwartz, I.; Watanabe, K.; Taniguchi, T.; Kroner, M.; Imamoğlu, A. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 2020, 580, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.-J.; Hou, Y.; Liu, S.-C.; Wei, M.; Chen, B.; Huang, Z.; Li, Z.; Sun, B.; Proppe, A.H.; Dong, Y.; et al. Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 2020, 11, 1514. [Google Scholar] [CrossRef]
- Yang, J.C.; Kim, J.-O.; Oh, J.; Kwon, S.Y.; Sim, J.Y.; Kim, D.W.; Choi, H.B.; Park, S. Microstructured Porous Pyramid-Based Ultrahigh Sensitive Pressure Sensor Insensitive to Strain and Temperature. ACS Appl. Mater. Interfaces 2019, 11, 19472–19480. [Google Scholar] [CrossRef] [PubMed]
- Buscema, M.; Steele, G.A.; van der Zant, H.S.J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2015, 7, 561–571. [Google Scholar] [CrossRef]
- Kadantsev, E.S.; Hawrylak, P. Electronic structure of a single MoS2 monolayer. Solid State Commun. 2012, 152, 909–913. [Google Scholar] [CrossRef]
- Li, T.; Gui, Y.; Zhao, W.; Tang, C.; Dong, X. Palladium modified MoS2 monolayer for adsorption and scavenging of SF6 decomposition products: A DFT study. Phys. E: Low-Dimensional Syst. Nanostructures 2020, 123, 114178. [Google Scholar] [CrossRef]
- Akhtar, P.; Khan, M.J.I.; Kanwal, Z.; Ramay, S.M.; Mahmood, A.; Saleem, M. Ab-initio and experimental investigations on Au incorporated MoS2 for electronic and optical response. J. Alloy. Compd. 2021, 877, 160244. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, M.; Yang, S.; Shen, X.; Liu, Y.; Cao, D. Exciton recombination mechanisms in solution grown single crystalline CsPbBr3 perovskite. J. Lumin- 2020, 226, 117471. [Google Scholar] [CrossRef]
- Luo, H.; Li, X.; Zhao, Y.; Yang, R.; Bao, L.; Hao, Y.; Gao, Y.-N.; Shi, N.N.; Guo, Y.; Liu, G.; et al. Zhou Simultaneous generation of direct- and indirect-gap photoluminescence in multilayer MoS2 bubbles. Phys. Rev. Mater. 2020, 4, 074006. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Liu, J.G.; Tauzin, L.J.; Huang, D.; Sung, E.; Zhang, H.; Joplin, A.; Chang, W.S.; Nordlander, P.; Link, S. Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers. ACS Nano 2018, 12, 976–985. [Google Scholar] [CrossRef] [PubMed]
- An, K.; Feld, M.S. Semiclassical four-level single-atom laser. Phys. Rev. A 1997, 56, 1662–1665. [Google Scholar] [CrossRef]
- Al-Nashy, B.; Abdullah, M.; Al-Shatravi, A.G.; Al-Khursan, A.H. Lasing without population inversion in a four-level Y-type configuration in double quantum dot system. Pramana 2018, 91, 74. [Google Scholar] [CrossRef]
- Willatzen, M.; Wang, Z.L. Theory of contact electrification: Optical transitions in two-level systems. Nano Energy 2018, 52, 517–523. [Google Scholar] [CrossRef]
- Rzazewski, K.; Boyd, R.W. Equivalence of interaction Hamiltonians in the electric dipole approximation. J. Mod. Opt. 2004, 51, 1137–1147. [Google Scholar] [CrossRef]
- Uddin, S.Z.; Rabani, E.; Javey, A. Universal Inverse Scaling of Exciton–Exciton Annihilation Coefficient with Exciton Lifetime. Nano Lett. 2021, 21, 424–429. [Google Scholar] [CrossRef]
- Dong, N.; Li, Y.; Zhang, S.; McEvoy, N.; Gatensby, R.; Duesberg, G.S.; Wang, J. Saturation of Two-Photon Absorption in Layered Transition Metal Dichalcogenides: Experiment and Theory. ACS Photon. 2018, 5, 1558–1565. [Google Scholar] [CrossRef]
- McCreary, K.M.; Hanbicki, A.T.; Sivaram, S.V.; Jonker, B.T. A- and B-exciton photoluminescence intensity ratio as a measure of sample quality for transition metal dichalcogenide monolayers. APL Mater. 2018, 6, 111106. [Google Scholar] [CrossRef]
- Sun, D.; Rao, Y.; Reider, G.A.; Chen, G.; You, Y.; Brézin, L.; Harutyunyan, A.R.; Heinz, T.F. Observation of Rapid Exciton–Exciton Annihilation in Monolayer Molybdenum Disulfide. Nano Lett. 2014, 14, 5625–5629. [Google Scholar] [CrossRef]
- Lee, K.J.; Xin, W.; Guo, C. Annihilation mechanism of excitons in a MoS2 monolayer through direct Forster-type energy transfer and multistep diffusion. Phys. Rev. B 2020, 101, 195407. [Google Scholar] [CrossRef]
- He, Z.; Guo, Z.; Zhong, X.; Chen, X.; Xue, J.; Wang, X.; Chen, Y. Spectroscopic investigation of defects mediated oxidization of single-layer MoS2. Sci. China Technol. Sci. 2021, 64, 611–619. [Google Scholar] [CrossRef]
- Fujisawa, K.; Carvalho, B.R.; Zhang, T.; Perea-López, N.; Lin, Z.; Carozo, V.; Ramos, S.L.L.M.; Kahn, E.; Bolotsky, A.; Liu, H.; et al. Quantification and Healing of Defects in Atomically Thin Molybdenum Disulfide: Beyond the Controlled Creation of Atomic Defects. ACS Nano 2021, 15, 9658–9669. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Z.; Zhang, Q.; Li, X.; Guo, L.; Wu, J.; Li, Y.; Liu, W.; Li, P.; Fu, Y.; Ma, J. Efficient Optical Modulation of Exciton State Population in Monolayer MoS2 at Room Temperature. Nanomaterials 2022, 12, 3133. https://doi.org/10.3390/nano12183133
Ren Z, Zhang Q, Li X, Guo L, Wu J, Li Y, Liu W, Li P, Fu Y, Ma J. Efficient Optical Modulation of Exciton State Population in Monolayer MoS2 at Room Temperature. Nanomaterials. 2022; 12(18):3133. https://doi.org/10.3390/nano12183133
Chicago/Turabian StyleRen, Zeqian, Qiwei Zhang, Xiu Li, Lixia Guo, Jizhou Wu, Yuqing Li, Wenliang Liu, Peng Li, Yongming Fu, and Jie Ma. 2022. "Efficient Optical Modulation of Exciton State Population in Monolayer MoS2 at Room Temperature" Nanomaterials 12, no. 18: 3133. https://doi.org/10.3390/nano12183133
APA StyleRen, Z., Zhang, Q., Li, X., Guo, L., Wu, J., Li, Y., Liu, W., Li, P., Fu, Y., & Ma, J. (2022). Efficient Optical Modulation of Exciton State Population in Monolayer MoS2 at Room Temperature. Nanomaterials, 12(18), 3133. https://doi.org/10.3390/nano12183133