# Effective Practical Solutions for De-Icing of Automotive Component

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

^{2}R = V

^{2}/R, where R is the resistance [6]. Traditionally, for this kind of application, e.g., in aeronautics, electric ice protection systems require the employment of metallic heating elements [7]. Recently proposed de-icing strategies based on innovative solutions have exploit the functional properties of conductive nanoparticles to reduce the weight of bulk materials in the field of civil engineering and aeronautics, in the latter case leading to a reduction in fuel consumption and pollutants [1,3]. The employed nanoparticles, namely, carbon nanotubes and graphene-based nanoparticles, confer other desirable applicative functionalities to the host polymeric matrices: (i) they are capable of increasing the durability of polymeric materials, which are vulnerable to sunlight [8,9,10,11]; (ii) they are able to enhance mechanical, electromagnetic, and dielectric properties [12,13,14,15,16,17,18]; (iii) they are well suited to revolutionizing manufacturing processes to save considerable amounts of energy [19]; and (iv) they are able to increase the adhesion properties of polymers by using carbon fabric as a filler in structural components [20,21,22].

## 2. Materials and Methods

#### 2.1. Materials

^{®}and are based on MWCNTs obtained by catalytic chemical vapor deposition using corn-origin bioethanol as a carbon source in an industrial fluidized bed system yielding 400 T/yr. They are characterized by an outer mean diameter ranging between 10 nm and 15 nm, a length in the range from 0.1 μm to 10 μm, a carbon content higher than 90 wt%, and an Aspect Ratio (AR) ranging from 10 to 1000.

^{®}C M14-25 masterbatch is a commercially available product composed of 25 wt% of MWCNTs dispersed in a polypropylene matrix. It contains no processing aids or other additives.

^{®}C ABS1-17 masterbatch is a commercially available product composed of 17 wt% of MWCNTs dispersed in a matrix of ABS.

^{®}C TPU1-20 masterbatch is a commercially available product composed of 20 wt% of MWCNTs dispersed in polyester-based thermoplastic polyurethane matrix without any other additives. It is particularly suitable for mixing with polyurethane materials.

^{®}SV-0167 from Cheil Industries was selected.

^{®}1180 A 10 from BASF, which is a polyether polyurethane with outstanding low temperature flexibility and a Shore A hardness of 80, which is in the useful range for, e.g., pipeline components.

#### 2.2. Production of Nano-Composites

#### 2.3. Methods

^{−1}.

## 3. Results

#### 3.1. TEM Micrographs

#### 3.2. Tensile Tests

#### 3.3. Rheological Measurements

^{1}Pa∙s), the other nanocomposites show higher viscosity, in the order of magnitude of 10

^{4}Pa∙s, due to the addition of nanotubes. The neat MB C ABS1-17 exhibits the highest viscosity of the ABS family (>10

^{5}Pa∙s).

^{4}Pa∙s.

#### 3.4. Electrical Conductivity Measurements

^{1}S/m, detected for the TPV(12) sample.

^{2}S/m, detected for the ABS(17) sample, which is very similar to the electrical conductivity of the ABS (12) sample.

_{0}(S/m) value and t (dimensionless) exponent are reported for all the analyzed systems.

#### 3.5. Heating and De-Icing Tests

#### 3.5.1. Simplified Analytical Model of Joule Effect

^{2}) is the cross-section surface perpendicular to the electrical current flow. Then, Equations (1) and (2) can be combined to obtain the power generated per unit volume, as follows:

^{3}) or electrical power source.

^{3}), k (W/m∙K), and c

_{p}(J/kg∙K) are the density, thermal conductivity, and specific heat of the material, respectively, while T (K) is the temperature and t (s) is the time. Equation (4) states that the variation of temperature in time (the left term, called heat flux or heat power) is proportional to the 3D temperature gradient and power generating source (right terms).

_{ext}(K) is the external temperature of the environment in which the domain is merged, and h

_{c}(W/m

^{2}∙K) is the convective heat transfer coefficient of the air.

_{c}(m

^{2}) is the surface involved in convective fluxes.

#### 3.5.2. Experimental Data and Comparison with the Model

_{c}) was found to be one of the most important fitting parameters, and its value was fixed at 10 W/(m

^{2}·K), which is typical of natural convection conditions. A complete list of the fitting parameters used for the three case studies is reported in Table 2.

_{up}film and T

_{down}film).

## 4. Conclusions

^{1}S/m at 12%wt CNTs) for effective de-icing behaviour with low input voltages (12–24 V DC) safe for users. All materials resulted in useful de-icing times of less than 30′ to melt a 5 mm thick ice slab at −25 °C external temperature.

## Supplementary Materials

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Guadagno, L.; Foglia, F.; Pantani, R.; Romero-Sanchez, M.D.; Calderón, B.; Vertuccio, L. Low-voltage icing protection film for automotive and aeronautical industries. Nanomaterials
**2020**, 10, 1343. [Google Scholar] [CrossRef] [PubMed] - Vertuccio, L.; de Santis, F.; Pantani, R.; Lafdi, K.; Guadagno, L. Effective de-icing skin using graphene-based flexible heater. Compos. B Eng.
**2019**, 162, 600–610. [Google Scholar] [CrossRef] - Vertuccio, L.; Foglia, F.; Pantani, R.; Romero-Sánchez, M.; Calderón, B.; Guadagno, L. Carbon nanotubes and expanded graphite based bulk nanocomposites for de-icing applications. Compos. B Eng.
**2021**, 207, 108583. [Google Scholar] [CrossRef] - Donati, G.; de Nicola, A.; Munaò, G.; Byshkin, M.; Vertuccio, L.; Guadagno, L.; Le Goff, R.; Milano, G. Simulation of self-heating process on the nanoscale: A multiscale approach for molecular models of nanocomposite materials. Nanoscale Adv.
**2020**, 2, 3164–3180. [Google Scholar] [CrossRef] - Alexandra, V. Electric Power Systems: A Conceptual Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Meng, X.; Chen, T.; Li, Y.; Liu, S.; Pan, H.; Ma, Y.; Chen, Z.; Zhang, Y.; Zhu, S. Assembly of carbon nanodots in graphene-based composite for flexible electro-thermal heater with ultrahigh efficiency. Nano Res.
**2019**, 12, 2498–2508. [Google Scholar] [CrossRef] - Rutherford, R.B. De-ice and Anti-Ice System and Method for Aircraft Surfaces. U.S. Patent No. 6,194,685, 27 February 2001. [Google Scholar]
- Guadagno, L.; Raimondo, M.; Naddeo, C.; Di Bartolomeo, A.; Lafdi, K. Influence of multiwall carbon nanotubes on morphological and structural changes during UV irradiation of syndiotactic polypropylene films. J. Polym. Sci. B Polym. Phys.
**2012**, 50, 963–975. [Google Scholar] [CrossRef] - Naddeo, C.; Guadagno, L.; de Luca, S.; Vittoria, V.; Camino, G. Mechanical and transport properties of irradiated linear low density polyethylene (LLDPE). Polym. Degrad. Stab.
**2001**, 72, 239–247. [Google Scholar] [CrossRef] - Naddeo, C.; Guadagno, L.; Vittoria, V. Photooxidation of spherilene linear low-density polyethylene films subjected to environmental weathering. 1. Changes in mechanical properties. Polym. Degrad. Stab.
**2004**, 85, 1009–1013. [Google Scholar] [CrossRef] - Naddeo, C.; Vertuccio, L.; Barra, G.; Guadagno, L. Nano-charged polypropylene application: Realistic perspectives for enhancing durability. Materials
**2017**, 10, 943. [Google Scholar] [CrossRef] - Acierno, S.; Barretta, R.; Luciano, R.; de Sciarra, F.M.; Russo, P. Experimental evaluations and modeling of the tensile behavior of polypropylene/single-walled carbon nanotubes fibers. Compos. Struct.
**2017**, 174, 12–18. [Google Scholar] [CrossRef] - Barra, G.; Vertuccio, L.; Vietri, U.; Naddeo, C.; Hadavinia, H.; Guadagno, L. Toughening of epoxy adhesives by combined interaction of carbon nanotubes and silsesquioxanes. Materials
**2017**, 10, 1131. [Google Scholar] [CrossRef] [PubMed] - Kuzhir, P.; Paddubskaya, A.; Plyushch, A.; Volynets, N.; Maksimenko, S.; Macutkevic, J.; Kranauskaite, I.; Banys, J.; Ivanov, E.; Kotsilkova, R. Epoxy composites filled with high surface area-carbon fillers: Optimization of electromagnetic shielding, electrical, mechanical, and thermal properties. J. Appl. Phys.
**2013**, 114, 164304. [Google Scholar] [CrossRef] - Plyushch, A.; Macutkevic, J.; Kuzhir, P.; Banys, J.; Bychanok, D.; Lambin, P.; Bistarelli, S.; Cataldo, A.; Micciulla, F.; Bellucci, S. Electromagnetic properties of graphene nanoplatelets/epoxy composites. Compos. Sci. Technol.
**2016**, 128, 75–83. [Google Scholar] [CrossRef] - Russo, P.; Patti, A.; Petrarca, C.; Acierno, S. Thermal conductivity and dielectric properties of polypropylene-based hybrid compounds containing multiwalled carbon nanotubes. J. Appl. Polym. Sci.
**2018**, 135, 46470. [Google Scholar] [CrossRef] - Simon, D.A.; Bischoff, E.; Buonocore, G.G.; Cerruti, P.; Raucci, M.G.; Xia, H.; Schrekker, H.S.; Lavorgna, M.; Ambrosio, L.; Mauler, R.S. Graphene-based masterbatch obtained via modified polyvinyl alcohol liquid-shear exfoliation and its application in enhanced polymer composites. Mater. Des.
**2017**, 134, 103–110. [Google Scholar] [CrossRef] - Wang, J.; Zhang, K.; Hao, S.; Xia, H.; Lavorgna, M. Simultaneous reduction and surface functionalization of graphene oxide and the application for rubber composites. J. Appl. Polym. Sci.
**2019**, 136, 47375. [Google Scholar] [CrossRef] - Guadagno, L.; Sorrentino, A.; Delprat, P.; Vertuccio, L. Design of multifunctional composites: New strategy to save energy and improve mechanical performance. Nanomaterials
**2020**, 10, 2285. [Google Scholar] [CrossRef] - Guadagno, L.; Sarno, M.; Vietri, U.; Raimondo, M.; Cirillo, C.; Ciambelli, P. Graphene-based structural adhesive to enhance adhesion performance. RSC Adv.
**2015**, 5, 27874–27886. [Google Scholar] [CrossRef] - Korayem, A.H.; Li, C.Y.; Zhang, Q.H.; Zhao, X.L.; Duan, W.H. Effect of carbon nanotube modified epoxy adhesive on CFRP-to-steel interface. Compos. B Eng.
**2015**, 79, 95–104. [Google Scholar] [CrossRef] - Vertuccio, L.; Guadagno, L.; Spinelli, G.; Russo, S.; Iannuzzo, G. Effect of carbon nanotube and functionalized liquid rubber on mechanical and electrical properties of epoxy adhesives for aircraft structures. Compos. B Eng.
**2017**, 129, 1–10. [Google Scholar] [CrossRef] - Jyoti, J.; Basu, S.; Singh, B.P.; Dhakate, S. Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos. B Eng.
**2015**, 83, 58–65. [Google Scholar] [CrossRef] - Prashantha, K.; Soulestin, J.; Lacrampe, M.-F.; Krawczak, P.; Dupin, G.; Claes, M. Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties. Compos. Sci. Technol.
**2009**, 69, 1756–1763. [Google Scholar] [CrossRef] - Guadagno, L.; Raimondo, M.; Vertuccio, L.; Naddeo, C.; Barra, G.; Longo, P.; Lamberti, P.; Spinelli, G.; Nobile, M. Morphological, rheological and electrical properties of composites filled with carbon nanotubes functionalized with 1-pyrenebutyric acid. Compos. Part B Eng.
**2018**, 147, 12–21. [Google Scholar] [CrossRef] - Raimondo, M.; Guadagno, L.; Vertuccio, L.; Naddeo, C.; Barra, G.; Spinelli, G.; Lamberti, P.; Tucci, V.; Lafdi, K. Electrical conductivity of carbon nanofiber reinforced resins: Potentiality of Tunneling Atomic Force Microscopy (TUNA) technique. Compos. B Eng.
**2018**, 143, 148–160. [Google Scholar] [CrossRef] - Spinelli, G.; Lamberti, P.; Tucci, V.; Guadagno, L.; Vertuccio, L. Damage monitoring of structural resins loaded with carbon fillers: Experimental and theoretical study. Nanomaterials
**2020**, 10, 434. [Google Scholar] [CrossRef] - Al-Saleh, M.H.; Al-Anid, H.K.; Hussain, Y.A. CNT/ABS nanocomposites by solution processing: Proper dispersion and selective localization for low percolation threshold. Compos. Part A Appl. Sci. Manuf.
**2013**, 46, 53–59. [Google Scholar] [CrossRef] - Ma, Y.; Wu, D.; Liu, Y.; Li, X.; Qiao, H.; Yu, Z.-Z. Electrically conductive and super-tough polypropylene/carbon nanotube nanocomposites prepared by melt compounding. Compos. B Eng.
**2014**, 56, 384–391. [Google Scholar] [CrossRef] - Wang, J.; Kazemi, Y.; Wang, S.; Hamidinejad, M.; Mahmud, M.B.; Pötschke, P.; Park, C.B. Enhancing the electrical conductivity of PP/CNT nanocomposites through crystal-induced volume exclusion effect with a slow cooling rate. Compos. B Eng.
**2020**, 183, 107663. [Google Scholar] [CrossRef] - Ansari, M.Z.; Cho, C. An analytical model of joule heating in piezoresistive microcantilevers. Sensors
**2010**, 10, 9668. [Google Scholar] [CrossRef] - Mansor, M.; Fadzullah, S.; Masripan, N.; Omar, G.; Akop, M. Comparison between functionalized graphene and carbon nanotubes: Effect of morphology and surface group on mechanical, electrical, and thermal properties of nanocomposites. In Functionalized Graphene Nanocomposites and Their Derivatives; Elsevier: Amsterdam, The Netherlands, 2019; pp. 177–204. [Google Scholar]
- Battisti, A.; Skordos, A.A.; Partridge, I.K. Percolation threshold of carbon nanotubes filled unsaturated polyesters. Compos. Sci. Technol.
**2010**, 70, 633–637. [Google Scholar] [CrossRef][Green Version]

**Figure 2.**Heating measurement layout: (

**a**) schematic representation of the heating tests and (

**b**) configuration of the de-icing tests.

**Figure 3.**TEM micrographs of samples: (

**a**) CNTs; (

**b**) TPV(12) nanocomposite; (

**c**) ABS(12) nanocomposite; (

**d**) TPU(12) nanocomposite.

**Figure 5.**(

**a**) Young’s modulus, (

**b**) tensile strength, and (

**c**) strain at break of ABS nano-composites.

**Figure 6.**(

**a**) Young’s modulus, (

**b**) tensile strength, and (

**c**) strain at break of TPU nanocomposites; (

**d**–

**f**) tensile parameters at different values of speed rotation (rpm) during the mixing step.

**Figure 7.**Viscosity vs. shear rate of TPV(x) (

**a**), ABS(x) (

**b**), and TPU(x) (

**c**) at different loadings of MWCNTs.

**Figure 8.**Electrical conductivity of produced nano-composites and results of percolative theory applied to the experimental dataset of the samples: (

**a**) TPV(x); (

**b**) ABS(x); (

**c**) TPU(x); (

**d**) Fitting parameters of the percolative theory.

**Figure 10.**Comparison between experimental data (continuous curves) and analytical model (empty circles) of heating results detected at constant DC voltage on sheet-shaped specimens (

**a**) TPV12; (

**b**) ABS12; (

**c**) TPU12.

**Figure 11.**De-icing results at constant DC voltage on sheet-shaped specimens (

**a**) TPV12; (

**b**) ABS12; (

**c**) TPU12.

**Table 1.**Summary of pure thermoplastic polymers and CNT-based masterbatches adopted for developing electro-thermal plastic components.

Material | Neat Polymer Grade | CNT-Based Masterbatch Graphistrength ^{®} | Automotive Application |
---|---|---|---|

TPV (PP/EPDM) | Santoprene 121-58W175 | C M14-25 (PP + 25% CNT) | Door gaskets |

ABS | Starex SV-0167 | C ABS1-17 (ABS + 17% CNT) | Windshield cowl, glass covers |

TPU | Elastollan 1180 A 10 | C TPU1-20 (TPU + 20% CNT) | Water circuit pipelines |

Parameter | TPV 12% CNT | ABS 12% CNT | TPU 12% CNT |
---|---|---|---|

T_{ext} [K] | 298 | 298 | 298 |

h_{c} [W/m^{2}∙K] | 10 | 10 | 10 |

ρ [kg/m^{3}] | 970 (TPV) | 1040 (ABS) | 1100 (TPU) |

V [V] | 12 or 24 | 12 or 24 | 12 or 24 |

σ [S/m] | 89 | 51 | 23 |

c_{p} [J/kg∙K] | 1700 (polymers) | 1700 (polymers) | 1700 (polymers) |

L [m] | 0.089 | 0.089 | 0. 089 |

b [m] | 0.044 | 0.044 | 0.044 |

h [m] | 0.001416 | 0.000756 | 0.001116 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tinti, A.; Carallo, G.A.; Greco, A.; Romero-Sánchez, M.D.; Vertuccio, L.; Guadagno, L.
Effective Practical Solutions for De-Icing of Automotive Component. *Nanomaterials* **2022**, *12*, 2979.
https://doi.org/10.3390/nano12172979

**AMA Style**

Tinti A, Carallo GA, Greco A, Romero-Sánchez MD, Vertuccio L, Guadagno L.
Effective Practical Solutions for De-Icing of Automotive Component. *Nanomaterials*. 2022; 12(17):2979.
https://doi.org/10.3390/nano12172979

**Chicago/Turabian Style**

Tinti, Andrea, Gloria Anna Carallo, Antonio Greco, María Dolores Romero-Sánchez, Luigi Vertuccio, and Liberata Guadagno.
2022. "Effective Practical Solutions for De-Icing of Automotive Component" *Nanomaterials* 12, no. 17: 2979.
https://doi.org/10.3390/nano12172979