Effects of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogen-Based Fertilizers on Biochemical and Yield Attributes of Two Wheat Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization Techniques
2.2. Biochemical Contents Assays
2.3. Non-Enzymatic Antioxidant Activity Assays
2.4. Antioxidant Enzymatic Activity Assays
2.5. Yield Parameters
2.6. Statistical Analysis
3. Results
3.1. Characterization of Phytogenically Synthesized Ag/ZnO Nanomaterials
3.2. Role of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogen-based Fertilizers on Biochemical Content of Wheat Varieties
3.3. Role of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogen-based Fertilizers on the Non-Enzymatic Activity of Wheat Varieties
3.4. Role of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogen-Based Fertilizers on Antioxidant Enzymes Activity of Wheat Varieties
3.5. Role of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogen-based Fertilizers on Yield Attributes of Wheat Varieties
4. Discussion
4.1. Characterization of Phytogenically Synthesized Ag/ZnO Nanomaterials
4.2. Role of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogenous-Based Fertilizers on the Biochemistry of Wheat Varieties
4.3. Role of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogen-Based Fertilizers on Secondary Metabolites of Wheat Varieties
4.4. Role of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogen-based Fertilizers on Antioxidant Enzymes of Wheat Varieties
4.5. Role of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogen-based Fertilizers on Yield Attributes of Wheat Varieties
5. Conclusion and Future Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lafiandra, D.; Sestili, F.; Sissons, M.; Kiszonas, A.; Morris, C.F. Increasing the Versatility of Durum Wheat through Modifications of Protein and Starch Composition and Grain Hardness. Foods 2022, 11, 1532. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Muhammad, D.; Mussarat, M. Effect of Various Nitrogen Sources at Various Sulfur Levels on Maize–Wheat Yield and N/S Uptake under Different Climatic Conditions. J. Plant Growth Regul. 2022, 1–15. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, S.; Afshar, R.K.; Franck, W.; Zhou, Y. Durum wheat yield and protein influenced by nitrogen management and cropping rotation. J. Plant Nutr. 2022, 1–10. [Google Scholar] [CrossRef]
- Wang, X. Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security. Land 2022, 11, 484. [Google Scholar] [CrossRef]
- Gessesew, W.S.; Elias, E.; Gebresamuel, G.; Tefera, W. Soil type and fertilizer rate affect wheat (Triticum aestivum L.) yield, quality and nutrient use efficiency in Ayiba, northern Ethiopia. PeerJ 2022, 10, e13344. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.B. Overcoming global food security challenges through science and solidarity. Am. J. Agric. Econ. 2021, 103, 422–447. [Google Scholar] [CrossRef]
- Singh, D.; Arya, S.; Gupta, B.; Kaushik, D.; Arya, V.S.; Kumar, U.; Singh, K. Applications of nanotechnology in forest management. J. Nanosci. Nanotechnol. 2021, 21, 3466–3480. [Google Scholar] [CrossRef] [PubMed]
- Karuppannan, S.K.; Dowlath, M.J.H.; Ramachandran, S.; Rajadesingu, S.; Arunachalam, K.D. Interaction of nanomaterials with microbes. In Nano-Bioremediation: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 85–109. [Google Scholar]
- Fatima, F.; Hashim, A.; Anees, S. Efficacy of nanoparticles as nanofertilizer production: A review. Environ. Sci. Pollut. Res. 2021, 28, 1292–1303. [Google Scholar] [CrossRef]
- Basit, F.; Asghar, S.; Ahmed, T.; Ijaz, U.; Noman, M.; Hu, J.; Liang, X.; Guan, Y. Facile synthesis of nanomaterials as nanofertilizers: A novel way for sustainable crop production. Environ. Sci. Pollut. Res. 2022, 29, 51281–51297. [Google Scholar] [CrossRef]
- Gondal, A.H.; Tayyiba, L. Prospects of Using Nanotechnology in Agricultural Growth, Environment and Industrial Food Products. Rev. Agric. Sci. 2022, 10, 68–81. [Google Scholar] [CrossRef]
- Iqbal, M.A. Nano-fertilizers for sustainable crop production under changing climate: A global perspective. Sustain. Crop Prod. 2019, 8, 1–13. [Google Scholar]
- Ndaba, B.; Roopnarain, A.; Rama, H.; Maaza, M. Biosynthesized metallic nanoparticles as fertilizers: An emerging precision agriculture strategy. J. Integr. Agric. 2022, 21, 1225–1242. [Google Scholar] [CrossRef]
- Sarraf, M.; Vishwakarma, K.; Kumar, V.; Arif, N.; Das, S.; Johnson, R.; Janeeshma, E.; Puthur, J.T.; Aliniaeifard, S.; Chauhan, D.K.; et al. Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: An overview of the mechanisms. Plants 2022, 11, 316. [Google Scholar] [CrossRef]
- Mazhar, T.; Shrivastava, V.; Tomar, R.S. Green synthesis of bimetallic nanoparticles and its applications: A review. J. Pharm. Sci. Res. 2017, 9, 102–110. [Google Scholar]
- Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Dwivedi, R.P.; ALOthman, Z.A.; Mola, G.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ. Sci. 2019, 31, 257–269. [Google Scholar] [CrossRef]
- Sharma, R.; Tripathi, A. Green synthesis of nanoparticles and its key applications in various sectors. Mater. Today Proc. 2022, 48, 1626–1632. [Google Scholar] [CrossRef]
- Doolotkeldieva, T.; Bobusheva, S.; Zhasnakunov, Z.; Satybaldiev, A. Biological Activity of Ag and Cu Monometallic Nanoparticles and Ag-Cu Bimetallic Nanocomposites against Plant Pathogens and Seeds. J. Nanomater. 2022, 2022, 1190280. [Google Scholar] [CrossRef]
- Saleem, H.; Zaidi, S.J. Recent developments in the application of nanomaterials in agroecosystems. Nanomaterials 2020, 10, 2411. [Google Scholar] [CrossRef]
- Fen, L.B.; Rashid, A.H.A.; Nordin, N.I.; Hossain, M.M.; Uddin, S.M.K.; Johan, M.R.; Thangadurai, D. Applications of Nanomaterials in Agriculture and Their Safety Aspect. In Biogenic Nanomaterials; Apple Academic Press: Itasca, IL, USA, 2022; pp. 243–299. [Google Scholar]
- Khalaki, M.A.; Moameri, M.; Ghorbani, A.; Alagoz, S.M.; Dolatabadi, N.; Lajayer, B.A.; van Hullebusch, E.D. Effects, uptake and translocation of Ag-based nanoparticles in plants. In Toxicity of Nanoparticles in Plants; Academic Press: Cambridge, MA, USA, 2022; pp. 171–192. [Google Scholar]
- Hassanisaadi, M.; Barani, M.; Rahdar, A.; Heidary, M.; Thysiadou, A.; Kyzas, G.Z. Role of agrochemical-based nanomaterials in plants: Biotic and abiotic stress with germination improvement of seeds. Plant Growth Regul. 2022, 97, 375–418. [Google Scholar] [CrossRef]
- Al Jabri, H.; Saleem, M.H.; Rizwan, M.; Hussain, I.; Usman, K.; Alsafran, M. Zinc Oxide Nanoparticles and Their Biosynthesis: Overview. Life 2022, 12, 594. [Google Scholar] [CrossRef]
- Sarkar, M.R.; Rashid, M.H.O.; Rahman, A.; Kafi, M.A.; Hosen, M.I.; Rahman, M.S.; Khan, M.N. Recent advances in nanomaterials based sustainable agriculture: An overview. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100687. [Google Scholar]
- Bhardwaj, A.K.; Arya, G.; Kumar, R.; Hamed, L.; Pirasteh-Anosheh, H.; Jasrotia, P.; Lal Kashyap, P.; Singh, G.P. Switching to nanonutrients for sustaining agroecosystems and environment: The challenges and benefits in moving up from ionic to particle feeding. J. Nanobiotechnol. 2022, 20, 19. [Google Scholar] [CrossRef] [PubMed]
- Bayat, M.; Zargar, M.; Murtazova KM, S.; Nakhaev, M.R.; Shkurkin, S.I. Ameliorating Seed Germination and Seedling Growth of Nano-Primed Wheat and Flax Seeds Using Seven Biogenic Metal-Based Nanoparticles. Agronomy 2022, 12, 811. [Google Scholar] [CrossRef]
- Singhal, J.; Verma, S.; Kumar, S. The physio-chemical properties and applications of 2D nanomaterials in agricultural and environmental sustainability. Sci. Total Environ. 2022, 837, 155669. [Google Scholar] [CrossRef] [PubMed]
- Sorbiun, M.; Shayegan Mehr, E.; Ramazani, A.; Taghavi Fardood, S. Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye. J. Mater. Sci. Mater. Electron. 2018, 29, 2806–2814. [Google Scholar] [CrossRef]
- Hosny, M.; Fawzy, M.; Eltaweil, A.S. Green synthesis of bimetallic Ag/ZnO@ Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and antioxidant activities. Sci. Rep. 2022, 12, 7316. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F.A.J.N. A colorimetric method for the determination of sugars. Nature 1951, 168, 167. [Google Scholar] [CrossRef]
- Classics Lowry, O.; Rosebrough, N.; Farr, A.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Bailly, C.; Benamar, A.; Corbineau, F.; Côme, D. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol. Plant. 1996, 97, 104–110. [Google Scholar] [CrossRef]
- Giri, L.; Dhyani, P.; Rawat, S.; Bhatt, I.D.; Nandi, S.K.; Rawal, R.S.; Pande, V. In vitro production of phenolic compounds and antioxidant activity in callus suspension cultures of Habenaria edgeworthii: A rare Himalayan medicinal orchid. Ind. Crops Prod. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Velioglu, Y.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar] [CrossRef]
- Nayyar, H.; Gupta, D. Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environ. Exp. Bot. 2006, 58, 106–113. [Google Scholar] [CrossRef]
- Aucique Pérez, C.E. Wheat Resistance to Blast Using a Non-Host Selective Toxin and Host Metabolic Reprogramming through a Successful Infection by Pyricularia oryzae. Ph.D. Thesis, Federal University of Viçosa, Viçosa, Brazil, 2016. [Google Scholar]
- Lagrimini, L.M. Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol. 1991, 96, 577–583. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Magrach, A.; Sanz, M.J. Environmental and social consequences of the increase in the demand for ‘superfoods’ world-wide. People Nat. 2020, 2, 267–278. [Google Scholar] [CrossRef]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.-L.; Li, Q.; Zeng, X.-P.; Liu, Y.; Li, Y.-R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, K.; Song, W.; Zhong, N.; Wu, Y.; Fu, X. Improving crop nitrogen use efficiency toward sustainable green revolution. Annu. Rev. Plant Biol. 2022, 73, 523–551. [Google Scholar] [CrossRef]
- Kapoor, P.; Dhaka, R.K.; Sihag, P.; Mehla, S.; Sagwal, V.; Singh, Y.; Sonu, L.; Priyanka, B.; Krishna Pal, S.; Baoshan, X.; et al. Nanotechnology-enabled biofortification strategies for micronutrients enrichment of food crops: Current understanding and future scope. NanoImpact 2022, 26, 100407. [Google Scholar] [CrossRef]
- Shang, Y.; Hasan, M.K.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of Nanotechnology in Plant Growth and Crop Protection: A Review. Molecules 2019, 24, 2558. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Koca, F.D.; Halici, M.G.; Işik, Y.; Ünal, G. Green synthesis of Ag-ZnO nanocomposites by using Usnea florida and Pseudevernia furfuracea lichen extracts and evaluation of their neurotoxic effects. Inorg. Nano-Met. Chem. 2022, 8, 1–11. [Google Scholar] [CrossRef]
- Porrawatkul, P.; Pimsen, R.; Kuyyogsuy, A.; Teppaya, N.; Noypha, A.; Chanthai, S.; Nuengmatcha, P. Microwave-assisted synthesis of Ag/ZnO nanoparticles using Averrhoa carambola fruit extract as the reducing agent and their application in cotton fabrics with antibacterial and UV-protection properties. RSC Adv. 2022, 12, 15008–15019. [Google Scholar] [CrossRef] [PubMed]
- Hameed, S.; Khalil, A.T.; Ali, M.; Numan, M.; Khamlich, S.; Shinwari, Z.K.; Maaza, M. Greener synthesis of ZnO and Ag–ZnO nanoparticles using Silybum marianum for diverse biomedical applications. Nanomedicine 2019, 14, 655–673. [Google Scholar] [CrossRef]
- El Shafey, A.M. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing Synth. 2020, 9, 304–339. [Google Scholar] [CrossRef]
- Gour, A.; Jain, N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019, 47, 844–851. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Rafa, N.; Chowdhury, A.T.; Chowdhury, S.; Nahrin, M.; Islam, A.S.; Ong, H.C. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environ. Res. 2022, 204, 111967. [Google Scholar] [CrossRef]
- Thirumalai, K.; Shanthi, M.; Swaminathan, M. Natural sunlight active GdVO4–ZnO nanomaterials for photo–electrocatalytic and self–cleaning applications. J. Water Process Eng. 2017, 17, 149–160. [Google Scholar] [CrossRef]
- Hamidian, K.; Sarani, M.; Barani, M.; Khakbaz, F. Cytotoxic performance of green synthesized Ag and Mg dual doped ZnO NPs using Salvadora persica extract against MDA-MB-231 and MCF-10 cells. Arab. J. Chem. 2022, 15, 103792. [Google Scholar] [CrossRef]
- Sharwani, A.A.; Narayanan, K.B.; Khan, M.E.; Han, S.S. Photocatalytic degradation activity of goji berry extract synthesized silver-loaded mesoporous zinc oxide (Ag@ ZnO) nanocomposites under simulated solar light irradiation. Sci. Rep. 2022, 12, 10017. [Google Scholar] [CrossRef]
- Jha, P.K.; Chawengkijwanich, C.; Techato, K.; Limbut, W.; Luengchavanon, M. Callistemon viminalis Leaf Extract Mediated Biosynthesis of Ag, rGO-Ag-ZnO Nanomaterials for Catalytic PEM Fuel Cell Application. Trends Sci. 2022, 19, 493. [Google Scholar] [CrossRef]
- Guo, Y.; Fu, X.; Liu, R.; Chu, M.; Tian, W. Efficient green photocatalyst of Ag/ZnO nanoparticles for methylene blue photodegradation. J. Mater. Sci. Mater. Electron. 2022, 33, 2716–2728. [Google Scholar] [CrossRef]
- Dikshit, P.K.; Kumar, J.; Das, A.K.; Sadhu, S.; Sharma, S.; Singh, S.; Gupta, P.K.; Kim, B.S. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts 2021, 11, 902. [Google Scholar] [CrossRef]
- Imtiaz, H.; Shiraz, M.; Mir, A.R.; Hayat, S. Green synthesis of nanoparticles and their effect on plant growth and development: A review. Plant Arch. 2022, 22, 343–350. [Google Scholar] [CrossRef]
- Naz, R.; Aftab, M.; Sarwar, G.; Aslam, A.; Nazir, Q.; Naz, A.; Niaz, A.; Rasheed, F.; Kalsom, A.; Mukhtar, N.; et al. Evaluation of temporal and differential fertilizer application on growth, yield and quality of wheat. Pak. J. Agric. Res. 2022, 35, 78–84. [Google Scholar] [CrossRef]
- Landa, P. Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms. Plant Physiol. Biochem. 2021, 161, 12–24. [Google Scholar] [CrossRef]
- Salih, A.M.; Qahtan, A.A.; Al-Qurainy, F.; Al-Munqedhi, B.M. Impact of Biogenic Ag-Containing Nanoparticles on Germination Rate, Growth, Physiological, Biochemical Parameters, and Antioxidants System of Tomato (Solanum tuberosum L.) In Vitro. Processes 2022, 10, 825. [Google Scholar] [CrossRef]
- Ali, A.; Mohammad, S.; Khan, M.A.; Raja, N.I.; Arif, M.; Kamil, A.; Mashwani, Z.U.R. Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculata. Artif. Cells Nanomed. Biotechnol. 2019, 47, 715–724. [Google Scholar] [CrossRef]
- Ehsan, M.; Waheed, A.; Ullah, A.; Kazmi, A.; Ali, A.; Raja, N.I.; Mashwani, Z.-U.; Sultana, T.; Mustafa, N.; Ikram, M.; et al. Plant-Based Bimetallic Silver-Zinc Oxide Nanoparticles: A Comprehensive Perspective of Synthesis, Biomedical Applications, and Future Trends. BioMed Res. Int. 2022, 2022, 1215183. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Farooq, T.; Nisa, Z.U.; Hameed, A.; Ahmed, T.; Hameed, A. Priming with copper-chitosan nanoparticles elicit tolerance against PEG-induced hyperosmotic stress and salinity in wheat. BMC Chem. 2022, 16, 23. [Google Scholar] [CrossRef] [PubMed]
- Alabdallah, N.M.; Hasan, M.M.; Hammami, I.; Alghamdi, A.I.; Alshehri, D.; Alatawi, H.A. Green synthesized metal oxide nanoparticles mediate growth regulation and physiology of crop plants under drought stress. Plants 2021, 10, 1730. [Google Scholar] [CrossRef] [PubMed]
- Lahuta, L.B.; Szablińska-Piernik, J.; Głowacka, K.; Stałanowska, K.; Railean-Plugaru, V.; Horbowicz, M.; Pomastowski, P.; Buszewski, B. The Effect of Bio-Synthesized Silver Nanoparticles on Germination, Early Seedling Development, and Metabolome of Wheat (Triticum aestivum L.). Molecules 2022, 27, 2303. [Google Scholar] [CrossRef]
- Darjee, S.; Shrivastava, M.; Langyan, S.; Singh, G.; Pandey, R.; Sharma, A.; Khandelwal, A.; Singh, R. Integrated nutrient management reduced the nutrient losses and increased crop yield in irrigated wheat. Arch. Agron. Soil Sci. 2022, 1–12. [Google Scholar] [CrossRef]
- Xu, X.; Ma, F.; Zhou, J.; Du, C. Control-released urea improved agricultural production efficiency and reduced the ecological and environmental impact in rice-wheat rotation system: A life-cycle perspective. Field Crops Res. 2022, 278, 108445. [Google Scholar] [CrossRef]
Treatments | Description | Treatments | Description |
---|---|---|---|
T1 | Urea 50 mg/L | T13 | Urea 100 mg/L + NMs 20 ppm |
T2 | Urea 100 mg/L | T14 | Urea 100 mg/L + NMs 40 ppm |
T3 | AS 50 mg/L | T15 | Urea 100 mg/L + NMs 60 ppm |
T4 | AS 100 mg/L | T16 | Urea 100 mg/L + NMs 80 ppm |
T5 | NMs 20 ppm | T17 | AS 50 mg/L + NMs 20 ppm |
T6 | NMs 40 ppm | T18 | AS 50 mg/L + NMs 40 ppm |
T7 | NMs 60 ppm | T19 | AS 50 mg/L + NMs 60 ppm |
T8 | NMs 80 ppm | T20 | AS 50 mg/L + NMs 80 ppm |
T9 | Urea 50 mg/L + NMs 20 ppm | T21 | AS 100 mg/L + NMs 20 ppm |
T10 | Urea 50 mg/L + NMs 40 ppm | T22 | AS 100 mg/L + NMs 40 ppm |
T11 | Urea 50 mg/L + NMs 60 ppm | T23 | AS 100 mg/L + NMs 60 ppm |
T12 | Urea 50 mg/L + NMs 80 ppm | T24 | AS 100 mg/L + NMs 80 ppm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehsan, M.; Raja, N.I.; Mashwani, Z.U.R.; Zohra, E.; Abasi, F.; Ikram, M.; Mustafa, N.; Wattoo, F.H.; Proćków, J.; Pérez de la Lastra, J.M. Effects of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogen-Based Fertilizers on Biochemical and Yield Attributes of Two Wheat Varieties. Nanomaterials 2022, 12, 2894. https://doi.org/10.3390/nano12172894
Ehsan M, Raja NI, Mashwani ZUR, Zohra E, Abasi F, Ikram M, Mustafa N, Wattoo FH, Proćków J, Pérez de la Lastra JM. Effects of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogen-Based Fertilizers on Biochemical and Yield Attributes of Two Wheat Varieties. Nanomaterials. 2022; 12(17):2894. https://doi.org/10.3390/nano12172894
Chicago/Turabian StyleEhsan, Maria, Naveed Iqbal Raja, Zia Ur Rehman Mashwani, Efat Zohra, Fozia Abasi, Muhammad Ikram, Nilofar Mustafa, Feroza Hamid Wattoo, Jarosław Proćków, and José Manuel Pérez de la Lastra. 2022. "Effects of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogen-Based Fertilizers on Biochemical and Yield Attributes of Two Wheat Varieties" Nanomaterials 12, no. 17: 2894. https://doi.org/10.3390/nano12172894
APA StyleEhsan, M., Raja, N. I., Mashwani, Z. U. R., Zohra, E., Abasi, F., Ikram, M., Mustafa, N., Wattoo, F. H., Proćków, J., & Pérez de la Lastra, J. M. (2022). Effects of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogen-Based Fertilizers on Biochemical and Yield Attributes of Two Wheat Varieties. Nanomaterials, 12(17), 2894. https://doi.org/10.3390/nano12172894