Pool-Boiling Performance on Thin Metal Foils with Graphene-Oxide-Nanoflake Deposit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pool-Boiling Setup and Measurement Procedure
2.2. Graphene-Oxide-Nanoflake Deposition
2.3. Data Reduction and Image Processing
3. Results and Discussion
3.1. Boiling Performance on Foils Fully Coated by Graphene-Oxide Nanoflakes
3.2. Isolated Bubble Dynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Freitas, E.; Pontes, P.; Cautela, R.; Bahadur, V.; Miranda, J.; Ribeiro, A.P.C.; Souza, R.R.; Oliveira, J.D.; Copetti, J.B.; Lima, R.; et al. Article Pool Boiling of Nanofluids on Biphilic Surfaces: An Experimental and Numerical Study. Nanomaterials 2021, 11, 125. [Google Scholar] [CrossRef] [PubMed]
- Rishi, A.M.; Kandlikar, S.G.; Gupta, A. Salt Templated and Graphene Nanoplatelets Draped Copper (GNP-Draped-Cu) Composites for Dramatic Improvements in Pool Boiling Heat Transfer. Sci. Rep. 2020, 10, 11941. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Wang, Y.B.; Chen, K. Pool Boiling Heat Transfer Enhancement with Copper Nanowire Arrays. Appl. Therm. Eng. 2015, 75, 115–121. [Google Scholar] [CrossRef]
- Chu, K.H.; Enright, R.; Wang, E.N. Structured Surfaces for Enhanced Pool Boiling Heat Transfer. Appl. Phys. Lett. 2012, 100, 241603. [Google Scholar] [CrossRef]
- Može, M.; Vajc, V.; Zupančič, M.; Golobič, I. Hydrophilic and Hydrophobic Nanostructured Copper Surfaces for Efficient Pool Boiling Heat Transfer with Water, Water/Butanol Mixtures and Novec 649. Nanomaterials 2021, 11, 3216. [Google Scholar] [CrossRef]
- Zhang, F.; Jacobi, A.M. Aluminum Surface Wettability Changes by Pool Boiling of Nanofluids. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 438–444. [Google Scholar] [CrossRef]
- Webb, R.L. The Evolution of Enhanced Surface Geometries for Nucleate Boiling. Heat Transf. Eng. 1981, 2, 46–69. [Google Scholar] [CrossRef]
- Mukherjee, S.; Ali, N.; Aljuwayhel, N.F.; Mishra, P.C.; Sen, S.; Chaudhuri, P. Pool Boiling Amelioration by Aqueous Dispersion of Silica Nanoparticles. Nanomaterials 2021, 11, 2138. [Google Scholar] [CrossRef]
- Garivalis, A.I.; Manfredini, G.; Saccone, G.; Di Marco, P.; Kossolapov, A.; Bucci, M. Critical Heat Flux Enhancement in Microgravity Conditions Coupling Microstructured Surfaces and Electrostatic Field. npj Microgravity 2021, 7, 37. [Google Scholar] [CrossRef]
- Sajjad, U.; Hussain, I.; Imran, M.; Sultan, M.; Wang, C.C.; Alsubaie, A.S.; Mahmoud, K.H. Boiling Heat Transfer Evaluation in Nanoporous Surface Coatings. Nanomaterials 2021, 11, 3383. [Google Scholar] [CrossRef]
- Jaikumar, A.; Kandlikar, S.G.; Gupta, A. Pool Boiling Enhancement through Graphene and Graphene Oxide Coatings. Heat Transf. Eng. 2017, 38, 1274–1284. [Google Scholar] [CrossRef]
- Jaikumar, A.; Gupta, A.; Kandlikar, S.G.; Yang, C.Y.; Su, C.Y. Scale Effects of Graphene and Graphene Oxide Coatings on Pool Boiling Enhancement Mechanisms. Int. J. Heat Mass Transf. 2017, 109, 357–366. [Google Scholar] [CrossRef]
- Lee, C.; Kim, H.; Ahn, H.S.; Kim, M.H.; Kim, J. Micro/Nanostructure Evolution of Zircaloy Surface Using Anodization Technique: Application to Nuclear Fuel Cladding Modification. Appl. Surf. Sci. 2012, 258, 8724–8731. [Google Scholar] [CrossRef]
- Stutz, B.; Morceli, C.H.S.; da Silva, M.d.F.; Cioulachtjian, S.; Bonjour, J. Influence of Nanoparticle Surface Coating on Pool Boiling. Exp. Therm. Fluid Sci. 2011, 35, 1239–1249. [Google Scholar] [CrossRef]
- Young Lee, C.; Hossain Bhuiya, M.M.; Kim, K.J. Pool Boiling Heat Transfer with Nano-Porous Surface. Int. J. Heat Mass Transf. 2010, 53, 4274–4279. [Google Scholar] [CrossRef]
- Tang, Y.; Tang, B.; Li, Q.; Qing, J.; Lu, L.; Chen, K. Pool-Boiling Enhancement by Novel Metallic Nanoporous Surface. Exp. Therm. Fluid Sci. 2013, 44, 194–198. [Google Scholar] [CrossRef]
- Ujereh, S.; Fisher, T.; Mudawar, I. Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling. Int. J. Heat Mass Transf. 2007, 50, 4023–4038. [Google Scholar] [CrossRef]
- Kruse, C.M.; Anderson, T.; Wilson, C.; Zuhlke, C.; Alexander, D.; Gogos, G.; Ndao, S. Enhanced Pool-Boiling Heat Transfer and Critical Heat Flux on Femtosecond Laser Processed Stainless Steel Surfaces. Int. J. Heat Mass Transf. 2015, 82, 109–116. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Guo, C. Multifunctional Surfaces Produced by Femtosecond Laser Pulses. J. Appl. Phys. 2015, 117, 033103. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, D.; Qiu, R. Extreme Wettability Due to Dendritic Copper Nanostructure via Electrodeposition. Appl. Surf. Sci. 2011, 257, 8438–8442. [Google Scholar] [CrossRef]
- Wu, Y.; Kouno, M.; Saito, N.; Andrei Nae, F.; Inoue, Y.; Takai, O. Patterned Hydrophobic-Hydrophilic Templates Made from Microwave-Plasma Enhanced Chemical Vapor Deposited Thin Films. Thin Solid Films 2007, 515, 4203–4208. [Google Scholar] [CrossRef]
- Lay, K.K.; Ong, J.S.; Yong, K.Y.; Tan, M.K.; Hung, Y.M. Nucleate Pool Boiling Enhancement by Ultrafast Water Permeation in Graphene-Nanostructure. Int. Commun. Heat Mass Transf. 2019, 101, 26–34. [Google Scholar] [CrossRef]
- Akbari, A.; Mohammadian, E.; Alavi Fazel, S.A.; Shanbedi, M.; Bahreini, M.; Heidari, M.; Ahmadi, G. Comparison between Nucleate Pool Boiling Heat Transfer of Graphene Nanoplatelet- and Carbon Nanotube-Based Aqueous Nanofluids. ACS Omega 2019, 4, 19183–19192. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.S.; Kim, J.M.; Kim, M.H. Experimental Study of the Effect of a Reduced Graphene Oxide Coating on Critical Heat Flux Enhancement. Int. J. Heat Mass Transf. 2013, 60, 763–771. [Google Scholar] [CrossRef]
- Kim, J.M.; Kim, T.; Kim, J.; Kim, M.H.; Ahn, H.S. Effect of a Graphene Oxide Coating Layer on Critical Heat Flux Enhancement under Pool Boiling. Int. J. Heat Mass Transf. 2014, 77, 919–927. [Google Scholar] [CrossRef]
- Seo, H.; Chu, J.H.; Kwon, S.Y.; Bang, I.C. Pool Boiling CHF of Reduced Graphene Oxide, Graphene, and SiC-Coated Surfaces under Highly Wettable FC-72. Int. J. Heat Mass Transf. 2015, 82, 490–502. [Google Scholar] [CrossRef]
- Sezer, N.; Khan, S.A.; Koç, M. Amelioration of the Pool Boiling Heat Transfer Performance via Self-Assembling of 3D Porous Graphene/Carbon Nanotube Hybrid Film over the Heating Surface. Int. J. Heat Mass Transf. 2019, 145, 118732. [Google Scholar] [CrossRef]
- Khan, S.A.; Al-Ghamdi, S.G. Synthesis of Graphene Oxide Nanofluid Based Micro-Nano Scale Surfaces for High-Performance Nucleate Boiling Thermal Management Systems. Case Stud. Therm. Eng. 2021, 28, 101436. [Google Scholar] [CrossRef]
- Gregorčič, P.; Zupančič, M.; Golobič, I. Scalable Surface Microstructuring by a Fiber Laser for Controlled Nucleate Boiling Performance of High- and Low-Surface-Tension Fluids. Sci. Rep. 2018, 8, 7461. [Google Scholar] [CrossRef]
- Voglar, J.; Gregorčič, P.; Zupančič, M.; Golobič, I. Boiling Performance on Surfaces with Capillary-Length-Spaced One- and Two-Dimensional Laser-Textured Patterns. Int. J. Heat Mass Transf. 2018, 127, 1188–1196. [Google Scholar] [CrossRef]
- Arik, M.; Bar-Cohen, A. Effusivity-Based Correlation of Surface Property Effects in Pool Boiling CHF of Dielectric Liquids. Int. J. Heat Mass Transf. 2003, 46, 3755–3764. [Google Scholar] [CrossRef]
- Golobič, I.; Bergles, A.E. Effects of Heater-Side Factors on the Saturated Pool Boiling Critical Heat Flux. Exp. Therm. Fluid Sci. 1997, 15, 43–51. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.M. The Reduction of Graphene Oxide. Carbon N. Y. 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Saleem, H.; Haneef, M.; Abbasi, H.Y. Synthesis Route of Reduced Graphene Oxide via Thermal Reduction of Chemically Exfoliated Graphene Oxide. Mater. Chem. Phys. 2018, 204, 1–7. [Google Scholar] [CrossRef]
- Zupančič, M.; Može, M.; Gregorčič, P.; Golobič, I. Nanosecond Laser Texturing of Uniformly and Non-Uniformly Wettable Micro Structured Metal Surfaces for Enhanced Boiling Heat Transfer. Appl. Surf. Sci. 2017, 399, 480–490. [Google Scholar] [CrossRef]
- Može, M.; Senegačnik, M.; Gregorčič, P.; Hočevar, M.; Zupančič, M.; Golobič, I. Laser-Engineered Microcavity Surfaces with a Nanoscale Superhydrophobic Coating for Extreme Boiling Performance. ACS Appl. Mater. Interfaces 2020, 12, 24419–24431. [Google Scholar] [CrossRef]
- Park, H.; Lim, S.; Nguyen, D.D.; Suk, J.W. Electrical Measurements of Thermally Reduced Graphene Oxide Powders under Pressure. Nanomaterials 2019, 9, 1387. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Jang, J.; Nagase, S. Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design. J. Phys. Chem. C 2010, 114, 832–842. [Google Scholar] [CrossRef]
- Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R.D.; Stankovich, S.; Jung, I.; Field, D.A.; Ventrice, C.A.; et al. Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-ray Photoelectron and Micro-Raman Spectroscopy. Carbon N. Y. 2009, 47, 145–152. [Google Scholar] [CrossRef]
- Kamatchi, R.; Venkatachalapathy, S.; Abhinaya Srinivas, B. Synthesis, Stability, Transport Properties, and Surface Wettability of Reduced Graphene Oxide/Water Nanofluids. Int. J. Therm. Sci. 2015, 97, 17–25. [Google Scholar] [CrossRef]
- Petkovsek, J.; Heng, Y.; Zupancic, M.; Gjerkes, H.; Cimerman, F.; Golobic, I. IR Thermographic Investigation of Nucleate Pool Boiling at High Heat Flux. Int. J. Refrig. 2016, 61, 127–139. [Google Scholar] [CrossRef]
- Ravichandran, M.; Bucci, M. Online, Quasi-Real-Time Analysis of High-Resolution, Infrared, Boiling Heat Transfer Investigations Using Artificial Neural Networks. Appl. Therm. Eng. 2019, 163, 114357. [Google Scholar] [CrossRef]
- Pečnik, T.; Gregorčič, P.; Golobič, I. Rapid Detection of Active Nucleation Sites in Pool Boiling Experiments Based on Analysis of Transient Methods. ŠTeKam 2020, 103–110. [Google Scholar]
- Phan, H.T.; Caney, N.; Marty, P.; Colasson, S.; Gavillet, J. How Does Surface Wettability Influence Nucleate Boiling? Comptes Rendus—Mec. 2009, 337, 251–259. [Google Scholar] [CrossRef]
- Teodori, E.; Valente, T.; Malavasi, I.; Moita, A.S.; Marengo, M.; Moreira, A.L.N. Effect of Extreme Wetting Scenarios on Pool Boiling Conditions. Appl. Therm. Eng. 2017, 115, 1424–1437. [Google Scholar] [CrossRef]
- Bahaidarah, H.M.S.; Baloch, A.A.B.; Gandhidasan, P. Uniform Cooling of Photovoltaic Panels: A Review. Renew. Sustain. Energy Rev. 2016, 57, 1520–1544. [Google Scholar] [CrossRef]
Surface | REF | GO | GO1 | GO2 | NS-REF | NS-GO1 |
---|---|---|---|---|---|---|
θ (°) | 98 | 29 | 48 | 77 | / | / |
Ra (µm) | 0.07 | / | 0.06 | 0.06 | 1.09 | 1.05 |
Rq (µm) | 0.08 | / | 0.07 | 0.08 | 1.34 | 1.30 |
Rz (µm) | 0.25 | / | 0.23 | 0.26 | 4.71 | 4.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bregar, T.; Vodopivec, M.; Pečnik, T.; Zupančič, M.; Golobič, I. Pool-Boiling Performance on Thin Metal Foils with Graphene-Oxide-Nanoflake Deposit. Nanomaterials 2022, 12, 2772. https://doi.org/10.3390/nano12162772
Bregar T, Vodopivec M, Pečnik T, Zupančič M, Golobič I. Pool-Boiling Performance on Thin Metal Foils with Graphene-Oxide-Nanoflake Deposit. Nanomaterials. 2022; 12(16):2772. https://doi.org/10.3390/nano12162772
Chicago/Turabian StyleBregar, Tadej, Matevž Vodopivec, Tim Pečnik, Matevž Zupančič, and Iztok Golobič. 2022. "Pool-Boiling Performance on Thin Metal Foils with Graphene-Oxide-Nanoflake Deposit" Nanomaterials 12, no. 16: 2772. https://doi.org/10.3390/nano12162772
APA StyleBregar, T., Vodopivec, M., Pečnik, T., Zupančič, M., & Golobič, I. (2022). Pool-Boiling Performance on Thin Metal Foils with Graphene-Oxide-Nanoflake Deposit. Nanomaterials, 12(16), 2772. https://doi.org/10.3390/nano12162772