Interaction of Ge(Si) Self-Assembled Nanoislands with Different Modes of Two-Dimensional Photonic Crystal
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Q.; Bahadori, M.; Glick, M.; Rumley, S.; Bergman, K. Recent advances in optical technologies for data centers: A review. Optica 2018, 5, 1354–1370. [Google Scholar] [CrossRef]
- Margalit, N.; Xiang, C.; Bowers, S.M.; Bjorlin, A.; Blum, R.; Bowers, J.E. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 2021, 118, 220501. [Google Scholar] [CrossRef]
- Atabaki, A.H.; Moazeni, S.; Pavanello, F.; Gevorgyan, H.; Notaros, J.; Alloatti, L.; Ram, R.J. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 2018, 556, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Ellis, B.; Shambat, G.; Sarmiento, T.; Harris, J.S.; Vuckovic, J. Nanobeam photonic crystal cavity quantum dot laser. Opt. Express 2010, 18, 8781–8789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Painter, O.; Lee, R.K.; Scherer, A.; Yariv, A.; O’brien, J.D.; Dapkus, P.D.; Kim, I. Two-dimensional photonic band-gap defect mode laser. Science 1999, 284, 1819–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, B.; Mayer, M.A.; Shambat, G.; Sarmiento, T.; Harris, J.; Haller, E.E.; Vučković, J. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat. Photonics 2011, 5, 297–300. [Google Scholar] [CrossRef]
- Bergman, D.J.; Stockman, M.I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 2011, 90, 027402. [Google Scholar] [CrossRef] [Green Version]
- Noginov, M.A.; Zhu, G.; Belgrave, A.M.; Bakker, R.; Shalaev, V.M.; Narimanov, E.E.; Stout, S.; Herz, E.; Suteewong, T.; Wiesner, U. Demonstration of a spaser-based nanolaser. Nature 2009, 460, 1110–1112. [Google Scholar] [CrossRef]
- Mylnikov, V.; Ha, S.T.; Pan, Z.; Valuckas, V.; Paniagua-Domínguez, R.; Demir, H.V.; Kuznetsov, A.I. Lasing Action in Single Subwavelength Particles Supporting Supercavity Modes. ACS Nano 2020, 14, 7338–7346. [Google Scholar] [CrossRef]
- Koshelev, K.; Kruk, S.; Melik-Gaykazyan, E.; Choi, J.; Bogdanov, A.; Park, H.-G.; Kivshar, Y. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 2020, 367, 288–292. [Google Scholar] [CrossRef] [Green Version]
- Hoang, T.X.; Ha, S.T.; Pan, Z.; Phua, W.K.; Paniagua-Domínguez, R.; Png, C.E.; Chu, H.-S.; Kuznetsov, A.I. Collective Mie resonances for directional on-chip nanolasers. Nano Lett. 2020, 8, 5655–5661. [Google Scholar] [CrossRef] [PubMed]
- Saldutti, M.; Xiong, M.; Dimopoulos, E.; Yu, Y.; Gioannini, M.; Mørk, J. Modal properties of photonic crystal cavities and applications to lasers. Nanomaterials 2021, 11, 3030. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.-M.; Wang, S.-Y. Plasmonic nanolasers: Fundamental properties and applications. Nanophotonics 2021, 10, 3623–3633. [Google Scholar] [CrossRef]
- Koshelev, K.; Kivshar, Y. Dielectric resonant metaphotonics. ACS Photonics 2021, 8, 102–112. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472–aag2478. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Xia, H.; Xu, J.; Sun, X.; Liu, X. Manipulating Luminescence of Light Emitters by Photonic Crystals. Adv. Mater. 2018, 47, 1803362. [Google Scholar] [CrossRef]
- Norman, J.C.; Jung, D.; Wan, Y.; Bowers, J.E. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics 2018, 3, 030901. [Google Scholar] [CrossRef] [Green Version]
- Kaur, P.; Boes, A.; Ren, G.; Nguyen, T.G.; Roelkens, G.; Mitchell, A. Hybrid and heterogeneous photonic integration. APL Photonics 2021, 6, 061102. [Google Scholar] [CrossRef]
- Pillarisetty, R. Academic and industry research progress in germanium nanodevices. Nature 2011, 479, 324–328. [Google Scholar] [CrossRef]
- Nishida, K.; Xu, X.; Sawano, K.; Maruizumi, T.; Shiraki, Y. Highly n-doped, tensile-strained Ge grown on Si by molecular beam epitaxy. Thin Solid Films 2014, 557, 66–69. [Google Scholar] [CrossRef]
- Petykiewicz, J.; Nam, D.; Sukhdeo, D.S.; Gupta, S.; Buckley, S.; Piggott, A.Y.; Vuckovic, J.; Saraswat, K.C. Direct bandgap light emission from strained Ge nanowires coupled with high-Q optical cavities. Nano Lett. 2016, 16, 2168–2173. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi, A.; Sarau, G.; Xavier, J.; Paraïso, T.K.; Christiansen, S.; Vollmer, F. Maximizing photoluminescence extraction in silicon photonic crystal slabs. Sci. Rep. 2016, 6, 25135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millar, R.W.; Gallacher, K.; Frigerio, J.; Ballabio, A.; Bashir, A.; MacLaren, I.; Isella, G.; Paul, D.J. Analysis of Ge micro-cavities with in-plane tensile strains above 2%. Optics Express 2016, 24, 4365–4374. [Google Scholar] [CrossRef] [Green Version]
- Yurasov, D.V.; Yablonskiy, A.N.; Baidakova, N.A.; Shaleev, M.V.; Rodyakina, E.E.; Dyakov, S.A.; Novikov, A.V. Enhancing the photoluminescence response from thick Ge-on-Si layers using the photonic crystals. J. Phys. D Appl. Phys. 2022, 55, 075107. [Google Scholar] [CrossRef]
- Grydlik, M.; Hackl, F.; Groiss, H.; Glaser, M.; Halilovic, A.; Fromherz, T.; Jantsch, W.; Schäffler, F.; Brehm, M. Lasing from Glassy Ge Quantum Dots in Crystalline Si. ACS Photonics 2016, 3, 298–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbaz, A.; El Kurdi, M.; Aassime, A.; Sauvage, S.; Checoury, X.; Sagnes, I.; Baudot, C.; Boeuf, F.; Boucaud, P. Germanium microlasers on metallic pedestals. APL Photonics 2018, 3, 106102. [Google Scholar] [CrossRef]
- Bao, S.; Kim, D.; Onwukaeme, C.; Gupta, S.; Saraswat, K.; Lee, K.H.; Nam, D. Low-threshold optically pumped lasing in highly strained germanium nanowires. Nat. Commun. 2017, 8, 1845. [Google Scholar] [CrossRef]
- Lee, J.; Zhen, B.; Chua, S.; Qiu, W.; Joannopoulos, J.D.; Soljačić, M.; Shapira, O. Observation and differentiation of unique high-Q optical resonances near zerowave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett. 2012, 109, 067401–067405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirose, K.; Liang, Y.; Kurosaka, Y.; Watanabe, A.; Sugiyama, T.; Noda, S. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics 2014, 8, 406–411. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, C.; Liang, Y.; Li, Z.; Noda, S. Analytical perspective for bound states in the continuum in photonic crystal slabs. Phys. Rev. Lett. 2014, 113, 037401. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.W.; Zhen, B.; Stone, A.D.; Joannopoulos, J.D.; Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 2016, 1, 16048. [Google Scholar] [CrossRef] [Green Version]
- Kodigala, A.; Lepetit, T.; Gu, Q.; Bahari, B.; Fainman, Y.; Kanté, B. Lasing action from photonic bound states in continuum. Nature 2017, 541, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Rybin, M.V.; Koshelev, K.L.; Sadrieva, Z.F.; Samusev, K.B.; Bogdanov, A.A.; Limonov, M.F.; Kivshar, Y.S. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 2017, 119, 243901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadrieva, Z.; Frizyuk, K.; Petrov, M.; Kivshar, Y.; Bogdanov, A. Multipolar origin of bound states in the continuum. Phys. Rev. B 2019, 100, 115303. [Google Scholar] [CrossRef] [Green Version]
- Hwang, M.-S.; Lee, H.-C.; Kim, K.-H.; Jeong, K.-Y.; Kwon, S.-H.; Koshelev, K.; Kivshar, Y.; Park, H.-G. Ultralow-threshold laser using super-bound states in the continuum. Nat. Commun. 2021, 12, 4135. [Google Scholar] [CrossRef]
- Stepikhova, M.V.; Novikov, A.V.; Yablonskiy, A.N.; Shaleev, M.V.; Utkin, D.E.; Rutckaia, V.V.; Skorokhodov, E.V.; Sergeev, S.M.; Yurasov, D.V.; Krasilnik, Z.F. Light emission from Ge(Si)/SOI self-assembled nanoislands embedded in photonic crystal slabs of various period with and without cavities. Semicond. Sci. Technol. 2019, 34, 024003. [Google Scholar] [CrossRef]
- Yurasov, D.V.; Novikov, A.V.; Dyakov, S.A.; Stepikhova, M.V.; Yablonskiy, A.N.; Sergeev, S.M.; Utkin, D.E.; Krasilnik, Z.F. Enhancement of the luminescence signal from self-assembled Ge(Si) nanoislands due to interaction with the Modes of two-dimensional photonic crystals. Semiconductors 2020, 54, 975–981. [Google Scholar] [CrossRef]
- Dyakov, S.A.; Stepikhova, M.V.; Bogdanov, A.A.; Novikov, A.V.; Yurasov, D.V.; Shaleev, M.V.; Krasilnik, Z.F.; Tikhodeev, S.G.; Gippius, N.A. Photonic bound states in the continuum in Si structures with the self-assembled Ge nanoislands. Laser Photonics Rev. 2021, 15, 2000242. [Google Scholar] [CrossRef]
- Shiraki, Y.; Xu, X.; Xia, J.; Tsuboi, T.; Maruizumi, T. Electroluminescence from micro-cavities of photonic crystals, micro-disks and -rings including Ge Dots formed on SOI substrates. ECS Transactions 2012, 45, 235–246. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, C.; Li, D.; Huang, Z.; Li, K.; Yu, J.; Li, J.; Xu, X.; Maruizumi, T.; Xia, J. Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity. IEEE Photonics J. 2013, 5, 4500607. [Google Scholar] [CrossRef]
- Schatzl, M.; Hackl, F.; Glaser, M.; Rauter, P.; Brehm, M.; Spindlberger, L.; Simbula, A.; Galli, M.; Fromherz, T.; Schäffler, F. Enhanced telecom emission from single group-IV quantum dots by precise CMOS-compatible positioning in photonic crystal cavities. ACS Photonics 2017, 4, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Rutckaia, V.; Heyroth, F.; Novikov, A.; Shaleev, M.; Petrov, M.I.; Schilling, J. Quantum dot emission driven by Mie resonances in silicon nanostructures. Nano Lett. 2017, 17, 6886–6892. [Google Scholar] [CrossRef] [PubMed]
- Rutckaia, V.; Heyroth, F.; Schmidt, G.; Novikov, A.; Shaleev, M.; Savelev, R.; Schilling, J.; Petrov, M. Coupling of Ge quantum dots with collective sub-radiant modes of silicon nanopillar arrays. ACS Photonics 2021, 8, 209–217. [Google Scholar] [CrossRef]
- Tonkikh, A.A.; Cirlin, G.E.; Talalaev, V.G.; Zakharov, N.D.; Werner, P. Room temperature electroluminescence from multilayer GeSi heterostructures. Phys. Stat. Sol. (A) 2006, 203, 1390–1394. [Google Scholar] [CrossRef]
- Vostokov, N.V.; Drozdov, Y.N.; Krasil’nik, Z.F.; Lobanov, D.N.; Novikov, A.V.E.; Yablonskii, A.N. Low-energy photoluminescence of structures with GeSi/Si (001) self-assembled nanoislands. J. Exp. Theor. Phys. Lett. 2002, 76, 365–369. [Google Scholar] [CrossRef]
- Novikov, A.V.; Yablonskiy, A.N.; Platonov, V.V.; Obolenskiy, S.V.; Lobanov, D.N.; Krasilnik, Z.F. Effect of irradiation on the luminescence properties of low-dimensional SiGe/Si(001) heterostructures. Semiconductors 2010, 44, 329–334. [Google Scholar] [CrossRef]
- Brehm, M.; Grydlik, M. Site-controlled and advanced epitaxial Ge/Si quantum dots: Fabrication, properties, and applications. Nanotechnology 2017, 28, 392001. [Google Scholar] [CrossRef]
- Baranov, D.G.; Zuev, D.A.; Lepeshov, S.I.; Kotov, O.V.; Krasnok, A.E.; Evlyukhin, A.B.; Chichkov, B.N. All-dielectric nanophotonics: The quest for better materials and fabrication techniques. Optica 2017, 4, 814–825. [Google Scholar] [CrossRef]
- Tikhodeev, S.G.; Yablonskii, A.L.; Muljarov, E.A.; Gippius, N.A.; Ishihara, T. Quasiguided modes and optical properties of photonic crystal slabs. Phys. Rev. B 2002, 66, 045102. [Google Scholar] [CrossRef] [Green Version]
- Aleshkin, V.Y.; Bekin, N.A.; Kalugin, N.G.; Krasil’nik, Z.F.; Novikov, A.V.; Postnikov, V.V.; Seyringer, H. Self-organization of germanium nanoislands obtained in silicon by molecular-beam epitaxy. J. Exp. Theor. Phys. Lett. 1998, 67, 48–53. [Google Scholar] [CrossRef]
- Friedrich, H.; Wintgen, D. Interfering resonances and bound states in the continuum. Phys. Rev. A 1985, 32, 3231–3242. [Google Scholar] [CrossRef] [PubMed]
- Solodovchenko, N.; Samusev, K.; Bochek, D.; Limonov, M. Bound states in the continuum in strong-coupling and weak-coupling regimes under the cylinder–ring transition. Nanophotonics 2021, 10, 4347–4355. [Google Scholar] [CrossRef]
- Ha, S.T.; Fu, Y.H.; Emani, N.K.; Pan, Z.; Bakker, R.M.; Paniagua-Domínguez, R.; Kuznetsov, A.I. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 2018, 13, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Ha, S.T.; Shendre, S.; Durmusoglu, E.G.; Koh, W.-K.; Abujetas, D.R.; Sánchez-Gil, J.A.; Paniagua-Domínguez, R.; Demir, H.V.; Kuznetsov, A.I. Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum. Nano Lett. 2020, 20, 6005–6011. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepikhova, M.V.; Dyakov, S.A.; Peretokin, A.V.; Shaleev, M.V.; Rodyakina, E.E.; Novikov, A.V. Interaction of Ge(Si) Self-Assembled Nanoislands with Different Modes of Two-Dimensional Photonic Crystal. Nanomaterials 2022, 12, 2687. https://doi.org/10.3390/nano12152687
Stepikhova MV, Dyakov SA, Peretokin AV, Shaleev MV, Rodyakina EE, Novikov AV. Interaction of Ge(Si) Self-Assembled Nanoislands with Different Modes of Two-Dimensional Photonic Crystal. Nanomaterials. 2022; 12(15):2687. https://doi.org/10.3390/nano12152687
Chicago/Turabian StyleStepikhova, Margarita V., Sergey A. Dyakov, Artem V. Peretokin, Mikhail V. Shaleev, Ekaterina E. Rodyakina, and Alexey V. Novikov. 2022. "Interaction of Ge(Si) Self-Assembled Nanoislands with Different Modes of Two-Dimensional Photonic Crystal" Nanomaterials 12, no. 15: 2687. https://doi.org/10.3390/nano12152687
APA StyleStepikhova, M. V., Dyakov, S. A., Peretokin, A. V., Shaleev, M. V., Rodyakina, E. E., & Novikov, A. V. (2022). Interaction of Ge(Si) Self-Assembled Nanoislands with Different Modes of Two-Dimensional Photonic Crystal. Nanomaterials, 12(15), 2687. https://doi.org/10.3390/nano12152687