Quantum Coherence and Total Phase in Semiconductor Microcavities for Multi-Photon Excitation
Abstract
1. Introduction
2. Physical Model
3. Coherence, Fidelity and Total Phase
4. Numerical Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walls, D.F.; Millburn, G.J. Quantum Optics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Levi, F.; Mintert, F. A quantitative theory of coherent delocalization. New J. Phys. 2014, 16, 033007. [Google Scholar] [CrossRef]
- Bera, M.N.; Qureshi, T.; Siddiqui, M.A.; Pati, A.K. Duality of quantum coherence and path distinguishability. Phys. Rev. A 2015, 92, 012118. [Google Scholar] [CrossRef]
- Monda, D.; Datta, C.; Sazim, S. Quantum coherence sets the quantum speed limit for mixed states. Phys. Lett. A 2016, 380, 689–695. [Google Scholar] [CrossRef]
- Shao, L.H.; Xi, Z.J.; Fan, H.; Li, Y.M. Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 2015, 91, 042120. [Google Scholar] [CrossRef]
- Yuan, X.; Zhou, H.Y.; Cao, Z.; Ma, X.F. Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 2015, 92, 022124. [Google Scholar] [CrossRef]
- Rana, S.; Parashar, P.; Lewenstein, M. Trace-distance measure of coherence. Phys. Rev. A 2016, 93, 012110. [Google Scholar] [CrossRef]
- Chitambar, E.; Gour, G. Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 2016, 117, 030401. [Google Scholar] [CrossRef]
- Winter, A.; Yang, D. Operational resource theory of coherence. Phys. Rev. Lett. 2016, 116, 120404. [Google Scholar] [CrossRef]
- Baumgratz, T.; Cramer, M.; Plenio, M.B. Quantifying coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef]
- Streltsov, A.; Singh, U.; Dhar, H.S.; Bera, M.N.; Adesso, G. Measuring quantum coherence with entanglement. Phys. Rev. Lett. 2015, 115, 020403. [Google Scholar] [CrossRef]
- Napoli, C.; Bromley, T.R.; Cianciaruso, M.; Piani, M.; Johnston, N.; Adesso, G. Robustness of coherence: An operational and observable measure of quantum coherence. Phys. Rev. Lett. 2016, 116, 150502. [Google Scholar] [CrossRef] [PubMed]
- El-Qahtani, Z.M.H.; Abdel-Khalek, S.; Berrada, K. Quantum Coherence and Degree of Mixedness for a System of Two Superconducting Qubits Under Decohe\rence Conditions. J. Russ. Laser Res. 2022, 43, 139. [Google Scholar] [CrossRef]
- Li, B.-M.; Hu, M.-L.; Fan, H. Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence. Chin. Phys. B 2021, 30, 070307. [Google Scholar] [CrossRef]
- Du, S.P.; Bai, Z.F.; Qi, X.F. Coherence measures and optimal conversion for coherent states. Quantum Inf. Comput. 2015, 15, 1307. [Google Scholar] [CrossRef]
- Korotkov, A.N.; Keane, K. Decoherence suppression by quantum measurement reversal. Phys. Rev. A 2010, 81, 040103. [Google Scholar] [CrossRef]
- Ming, F.; Song, X.-K.; Ling, J.; Ye, L.; Wang, D. Quantification of quantumness in neutrino oscillations. Eur. Phys. J. C 2020, 80, 275. [Google Scholar] [CrossRef]
- Yuan, X.; Bai, G.; Peng, T.; Ma, X. Quantum uncertainty relation using coherence. Phys. Rev. A 2017, 96, 032313. [Google Scholar] [CrossRef]
- Xie, B.; Ming, F.; Wang, D.; Ye, L.; Chen, J. Optimized entropic uncertainty relations for multiple measurements. Phys. Rev. A 2021, 104, 062204. [Google Scholar] [CrossRef]
- Ming, F.; Wang, D.; Fan, X.-G.; Shi, W.; Ye, L.; Chen, J. Improved tripartite uncertainty relation with quantum memory. Phys. Rev. A 2020, 102, 012206. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, W.; Shi, W.; Ming, F.; Wang, D.; Ye, L. Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions. Front. Phys. 2019, 14, 31601. [Google Scholar] [CrossRef]
- Pancharatnam, S. Generalized theory of interference and its applications. Proc. Indian Acad. Sci. A 1956, 44, 247. [Google Scholar] [CrossRef]
- Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London Ser. A 1984, 392, 45. [Google Scholar]
- Jordan, T.F. Berry phases for partial cycles. Phys. Rev. A 1988, 38, 1590. [Google Scholar] [CrossRef] [PubMed]
- Samuel, J.; Bhandari, R. General setting for Berry’s phase. Phys. Rev. Lett. 1988, 60, 2339. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.V. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 1987, 34, 1401. [Google Scholar] [CrossRef]
- Weinfurter, H.; Banudrek, G. Measurement of Berry’s phase for noncyclic evolution. Phys. Rev. Lett. 1990, 64, 1318. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-S.; Li, H.-Z. Observable effects of the quantum adiabatic phase for noncyclic evolution. Phys. Rev. B 1988, 38, 11907. [Google Scholar] [CrossRef]
- Tarasov, V.E. Quantum computer with mixed states and four-valued logic. J. Phys. A 2002, 35, 5207. [Google Scholar] [CrossRef][Green Version]
- Ekert, A.K.; Ericsson, M.; Hayden, P.; Inamori, H.; Jones, J.A.; Oi, D.K.L.; Vedral, V. Geometric quantum computation. J. Mod. Opt. 2000, 47, 2501. [Google Scholar] [CrossRef]
- Abdel-Aty, M. The Pancharatnam phase of a two-level atom in the presence of another two-level atom in a cavity. J. Opt. B 2003, 5, 349. [Google Scholar] [CrossRef]
- Lawande, Q.V.; Lawande, S.V.; Joshi, A. Pancharatnam phase for a system of a two-level atom interacting with a quantized field in a cavity. Phys. Lett. A 1999, 251, 164. [Google Scholar] [CrossRef]
- Berrada, K.; Ooi, H.R.; Abdel-Khalek, A. Geometric phase and entanglement of Raman photon pairs in the presence of photonic band gap. J. Appl. Phys. 2015, 117, 124904. [Google Scholar] [CrossRef]
- Pati, A. Geometric phases for mixed states during unitary and non-unitary evolutions. Int. J. Quantum Inf. 2003, 1, 135. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Gerry, C.; Knight, P. Introductory Quantum Optics; Cambridge University Press: Cambridge, NY, USA, 2006. [Google Scholar]
- Pieczarka, M.; Estrecho, E.; Boozarjmehr, M.; Bleu, O.; Steger, M.; West, K.; Pfeiffer, L.N.; Snoke, D.W.; Levinsen, J.; Parish, M.M.; et al. Observation of quantum depletion in a non-equilibrium exciton–polariton condensate. Nat. Commun. 2020, 11, 429. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Berger, B.; Asmann, M.; Driben, R.; Meier, T.; Schneider, C.; Hofling, S.; Schumacher, S. Realization of all-optical vortex switching in exciton-polariton condensates. Nat. Commun. 2020, 11, 897. [Google Scholar] [CrossRef]
- Estrecho, E.; Gao, T.; Bobrovska, N.; Fraser, M.D.; Steger, M.; Pfeiffer, L.; West, K.; Liew, T.C.H.; Matuszewski, M.; Snoke, D.W.; et al. Direct measurement of polariton-polariton interaction strength in the Thomas-Fermi regime of exciton-polariton condensation. Nat. Commun. 2018, 9, 1. [Google Scholar] [CrossRef]
- Klaas, M.; Schlottmann, E.; Flayac, H.; Laussy, F.P.; Gericke, F.; Schmidt, M.; Helversen, M.v.; Beyer, J.; Brodbeck, S.; Suchomel, H.; et al. Photon-Number-Resolved Measurement of an Exciton-Polariton Condensate. Phys. Rev. Lett. 2018, 121, 047401. [Google Scholar] [CrossRef]
- Adiyatullin, A.F.; Anderson, M.D.; Busi, P.V.; Abbaspour, H.; Andre, R.; Portella-Oberli, M.T.; Deveaud, B. Temporally resolved second-order photon correlations of exciton-polariton Bose-Einstein condensate formation. Appl. Phys. Lett. 2015, 107, 221107. [Google Scholar] [CrossRef]
- Carreno, J.C.L.; SanchezMunoz, C.; Sanvitto, D.; del Valle, E.; Laussy, F.P. Exciting Polaritons with Quantum Light. Phys. Rev. Lett. 2015, 115, 196402. [Google Scholar] [CrossRef]
- Delteil, A.; Fink, T.; Schade, A.; Hofling, S.; Schneider, C.; Imamoglu, A. Towards polariton blockade of confined exciton-polaritons. Nat. Mater. 2019, 18, 219. [Google Scholar] [CrossRef]
- Munoz-Matutano, G.; Wood, A.; Johnsson, M.; Vidal, X.; Baragiola, B.Q.; Reinhard, A.; Lemaitre, A.; Bloch, J.; Amo, A.; Nogues, G.; et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater. 2019, 18, 213. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, A.; Carreno, J.C.L.; Silva, B.; de Giorgi, M.; Suarez-Forero, D.G.; Munoz, C.S.; Fieramosca, A.; Cardano, F.; Marrucci, L.; Tasco, V.; et al. Carbon Nanotube Devices for Quantum Technology—PMC. Sci. Adv. 2018, 4, eaao6814. [Google Scholar] [CrossRef]
- Baas, A.; Karr, J.P.; Eleuch, H.; Giacobino, E. Optical bistability in semiconductor microcavities. Phys. Rev. A 2004, 69, 023809. [Google Scholar] [CrossRef]
- Luders, C.; Pukrop, M.; Rozas, E.; Schneider, C.; Hofling, S.; Sperling, J.; Schumacher, S.; Asmann, M. Quantifying Quantum Coherence in Polariton Condensates. Phys. Rev. X Quantum 2021, 2, 030320. [Google Scholar] [CrossRef]
- Ciuti, C.; Savona, V.; Piermarocchi, C. Threshold behavior in the collision broadening of microcavity polaritons. Phys. Rev. B 1998, 58, R10123. [Google Scholar] [CrossRef]
- Tassone, F.; Yamamoto, Y. Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 1999, 59, 10830. [Google Scholar] [CrossRef]
- Haug, H. On the phase transitions for the electronic excitations in semiconductors. Z. Phys. B 1976, 24, 351. [Google Scholar] [CrossRef]
- Hanamura, E. Theory of Many Wannier Excitons. J. Phys. Soc. Jpn. 1974, 37, 1545. [Google Scholar] [CrossRef]
- Naguyen, A.B. Exciton-induced squeezed state of light in semiconductors. Phys. Rev. B 1993, 48, 11732. [Google Scholar]
- Eleuch, H. Quantum Trajectories and Autocorrelation Function in Semiconductor Microcavity. Appl. Math. Inf. Sci. 2009, 3, 185. [Google Scholar]
- Giacobino, E.; Karr, J.-P.; Messin, G.; Eleuch, H.; Baas, A. Quantum optical effects in semiconductor microcavities. Comptes Rendus Phys. 2002, 3, 41. [Google Scholar] [CrossRef]
- Ciuti, C.; Schwendimann, P.; Deveaud, B.; Quattropani, A. Theory of the angle-resonant polariton amplifier. Phys. Rev. B 2000, 62, R4825. [Google Scholar] [CrossRef]
- Eleuch, H. Photon statistics of light in semiconductor microcavities. J. Phys. B 2008, 41, 055502. [Google Scholar] [CrossRef]
- Eleuch, H.; Bennaceur, R.J. An optical soliton pair among absorbing three-level atoms. Opt. A 2003, 5, 528. [Google Scholar] [CrossRef]
- Louisell, W.H. Quantum Statistical Properties of Radiation; Wiley: New York, NY, USA, 1973. [Google Scholar]
- Bousse, N.E.; Miller, J.M.L.; Alter, A.L.; Cameron, C.P.; Kwon, H.K.; Vukasin, G.D.; Kenny, T.W. Negative nonlinear dissipation in microelectromechanical beams. J. Microelectromech. Syst. 2020, 29, 954. [Google Scholar] [CrossRef]
- Eleuch, H. Autocorrelation function of microcavity-emitting field in the linear regime. Eur. Phys. J. D 2008, 48, 139. [Google Scholar] [CrossRef]
- Eleuch, H.; Rachid, N. Autocorrelation function of microcavity-emitting field in the non-linear regime. Eur. Phys. J. D 2010, 57, 259. [Google Scholar] [CrossRef]
- Jabri, H.; Eleuch, H.; Djerad, T. Lifetimes of highly excited atomic states. Phys. Scr. 2006, 73, 397. [Google Scholar] [CrossRef]
- Carmichael, H.J. Statistical Methods in Quantum Optics 2; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Carmichael, H.J.; Brecha, R.J.; Rice, P.R. Quantum interference and collapse of the wavefunction in cavity QED. Opt. Commun. 1991, 82, 73. [Google Scholar] [CrossRef]
- Brecha, R.J.; Rice, P.R.; Xiao, M. N two-level atoms in a driven optical cavity: Quantum dynamics of forward photon scattering for weak incident fields. Phys. Rev. A 1991, 59, 2392. [Google Scholar] [CrossRef]
- Pati, A.K. Geometric aspects of noncyclic quantum evolutions. Phys. Rev. A 1995, 52, 2576. [Google Scholar] [CrossRef] [PubMed]
- Pati, A.K. Gauge-invariant reference section and geometric phase. J. Phys. A 1995, 28, 2087. [Google Scholar] [CrossRef]
- Mukunda, N.; Simon, R. Quantum Kinematic Approach to the Geometric Phase. I. General Formalism. Ann. Phys. 1993, 228, 205. [Google Scholar]
- Sjoqvist, E.; Pati, A.K.; Ekert, A.; Anandan, J.S.; Ericsson, M.; Oi, D.K.L.; Vedral, V. Geometric Phases for Mixed States in Interferometry. Phys. Rev. Lett. 2000, 84, 14. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altowyan, A.S.; Berrada, K.; Abdel-Khalek, S.; Eleuch, H. Quantum Coherence and Total Phase in Semiconductor Microcavities for Multi-Photon Excitation. Nanomaterials 2022, 12, 2671. https://doi.org/10.3390/nano12152671
Altowyan AS, Berrada K, Abdel-Khalek S, Eleuch H. Quantum Coherence and Total Phase in Semiconductor Microcavities for Multi-Photon Excitation. Nanomaterials. 2022; 12(15):2671. https://doi.org/10.3390/nano12152671
Chicago/Turabian StyleAltowyan, Abeer S., Kamal Berrada, Sayed Abdel-Khalek, and Hichem Eleuch. 2022. "Quantum Coherence and Total Phase in Semiconductor Microcavities for Multi-Photon Excitation" Nanomaterials 12, no. 15: 2671. https://doi.org/10.3390/nano12152671
APA StyleAltowyan, A. S., Berrada, K., Abdel-Khalek, S., & Eleuch, H. (2022). Quantum Coherence and Total Phase in Semiconductor Microcavities for Multi-Photon Excitation. Nanomaterials, 12(15), 2671. https://doi.org/10.3390/nano12152671