Tunable Emission and Color Temperature of Yb3+/Er3+/Tm3+-Tridoped Y2O3-ZnO Ceramic Nano-Phosphors Using Er3+ Concentration and Excitation Pump Power
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. SEM Morphology and EDS Mapping
3.2. XRD Results
3.3. Photoluminescence (PL) Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahu, D.; Panda, N.R.; Acharya, B.S. Effect of Gd doping on structure and photoluminescence properties of ZnO nanocrystals. Mater. Res. Express 2017, 4, 114001. [Google Scholar] [CrossRef]
- Ćirić, A.; Stojadinović, S. Upconversion photoluminescence properties of ZrO2:Ln3+/Yb3+ (Ln = Er, Ho, Tm) films formed by plasma electrolytic oxidation. Micro Nano Technol. 2022, 4, 103–118. [Google Scholar]
- Singh, D.; Gupta, I.; Singh, S.; Bhagwan, S. Rare earth (RE) doped phosphors and their emerging applications: A Review. Ceram. Int. 2021, 47, 19282–19303. [Google Scholar]
- Wujczyk, M.; Watras, A.; Szyszka, K.; Wiglusz, R.J. Influence of vanadium concentration on up-conversion luminescence in Er3+-Yb3+ and Tm3+-Yb3+ ions pair co-doped YVxP1-xO4 solid state solution. J. Alloys Compd. 2021, 884, 161022. [Google Scholar] [CrossRef]
- Siwach, A.; Kumar, D. Structural and optical behavior of nano-scaled luminous green-emitting Ca9Y(PO4)7:Tb3+ phosphor for competent lighting devices. Chem. Phys. Lett. 2021, 772, 138547. [Google Scholar] [CrossRef]
- Tadge, P.; Yadav, R.S.; Vishwakarma, P.K.; Rai, S.B.; Chen, T.-M.; Sapra, S.; Ray, S. Enhanced photovoltaic performance of Y2O3:Ho3+/Yb3+ upconversion nanophosphor based DSSC and investigation of color tunability in Ho3+/Tm3+/Yb3+ tridoped Y2O3. J. Alloys Compd. 2020, 821, 153230. [Google Scholar] [CrossRef]
- Lee, C.K.; Kim, Y.J. Correlation between local lattice distortions and up-/down-conversion luminescence of (Y, Al)NbO4:Yb3+/Er3+. Ceram. Int. 2022, 48, 3985–3992. [Google Scholar] [CrossRef]
- Zou, X.; Xiao, S.; Yang, X. Broadband wavelength excitable Er3+, Ni2+ co-doped MgGa2O4 up-conversion phosphor. Ceram. Int. 2021, 47, 13853–13858. [Google Scholar] [CrossRef]
- Huerta, E.F.; Balderas, U.; Tellez-Cruz, M.M.; Falcony, C. Role of Li+ ion in improved crystallization and the luminescence enhancement of up and down conversion process in Er3+/Yb3+ doped in Y4O(OH)9NO3 and Y2O3 nanoparticles. Ceram. Int. 2022, 48, 3192–3198. [Google Scholar] [CrossRef]
- De, A.; Dey, A.K.; Samanta, B.; Sur, S.; Paul, S.; Adalder, A.; Das, S.; Ghorai, U.K. Upconversion luminescence and time decay study of Yb-Er-doped BaWO4 nanophosphor. J. Mater. Sci. Mater. Electron. 2022, 33, 9641–9649. [Google Scholar] [CrossRef]
- Smirnov, A.M.; Bazakutsa, A.P.; Chamorovskiy, Y.K.; Nechepurenko, I.A.; Butov, O.V. Thermal switching of lasing regimes in heavily doped Er3+ fiber lasers. ACS Photonics 2018, 5, 5038–5046. [Google Scholar] [CrossRef] [Green Version]
- Pavitra, E.; Lee, H.; Hwang, S.K.; Park, J.Y.; Varaprasad, G.L.; Basaveswara Rao, M.V.; Han, Y.-K.; Raju, G.S.R.; Huh, Y.S. Cooperative ligand fields enriched luminescence of AgGd(MoO4)2:Er3+/Yb3+ @mSi core-shell upconversion nanoplates for optical thermometry and biomedical applications. Appl. Surf. Sci. 2022, 579, 152166. [Google Scholar] [CrossRef]
- Cang, L.; Qian, Z.; Wang, J.; Chen, L.; Wan, Z.; Yang, K.; Zhang, H.; Chen, Y. Applications and functions of rare-earth ions in perovskite solar cells. Chin. Phys. B 2022, 31, 038402. [Google Scholar] [CrossRef]
- Rakov, N.; Vieira, S.A.; Gomes, A. Highly sensitive optical thermometry operation using Eu3+:Y2O3 powders excited under low-intensity LED light source at 395 nm. J. Mater. Sci. Mater. Electron. 2021, 32, 23285–23292. [Google Scholar] [CrossRef]
- Xu, H.; Wang, T.; Wang, Y.; Li, Y.; Dong, H. A novel rare-earth luminescent coordination polymer showing potential semiconductor characteristic constructed by anthracene-based dicarboxylic acid ligand (H2L). J. Mol. Struct. 2021, 1243, 130788. [Google Scholar]
- Mhlongo, G.H.; Dhlamini, M.S.; Swart, H.C.; Ntwaeaborw, O.M.; Hillie, K.T. Dependence of photoluminescence (PL) emission intensity on Eu3+ and ZnO concentrations in Y2O3:Eu3+ and ZnO·Y2O3:Eu3+ nanophosphors. Opt. Mater. 2011, 33, 1495–1499. [Google Scholar] [CrossRef]
- Wang, D.; Xu, B.; Zou, K.; Sun, M.; Dong, G.; Liu, J. Effect of Er3+ concentration on the photoluminescence of Y2O3/ZnO up-conversion films. Opt. Mater. 2018, 83, 124–130. [Google Scholar] [CrossRef]
- Tai, Y.; Zhang, Y.; Sun, J.; Liu, F.; Tian, H.; Liu, Q.; Li, C. Y2O3:Yb3+, Tm3+/ZnO composite with a heterojunction structure and upconversion function for the photocatalytic degradation of organic dyes. RSC Adv. 2021, 11, 24044–24053. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Z.; Ye, W.; Feng, Z.; Cao, Y. Enhanced green up-conversion luminescence in In2O3:Yb3+/Er3+ by tri-doping Zn2+. J. Lumin. 2020, 221, 117029. [Google Scholar] [CrossRef]
- Sun, L.D.; Dong, H.; Zhang, P.Z.; Yan, C.H. Upconversion of rare earth nanomaterials. Annu. Rev. Phys. Chem. 2015, 66, 619–642. [Google Scholar] [CrossRef]
- Chen, G.Y.; Liu, Y.; Zhang, Y.G.; Somesfalean, G.; Wang, F.P. Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals. Appl. Phys. Lett. 2007, 91, 133103. [Google Scholar] [CrossRef]
- Maurya, A.; Dwivedi, A.; Bahadur, A.; Rai, S.B. Enhanced upconversion and downshifting emissions from Tm3+, Yb3+ co-doped CaZrO3 phosphor in the presence of alkali ions (Li+, Na+ and K+). J. Alloys Compd. 2019, 786, 457–467. [Google Scholar] [CrossRef]
- Lia, W.; Hea, Q.; Xua, J.; Shao, C.; Hu, L. Efficient NIR to NIR up-conversion in LiYF4:Yb3+,Tm3+ micro-octahedrons by modified hydrothermal method. J. Lumin. 2020, 227, 117396. [Google Scholar] [CrossRef]
- Shi, L.; Li, C.; Shen, Q.; Qiu, Z. White upconversion emission in Er3+/Yb3+/Tm3+ codoped LiTaO3 polycrystals. J. Alloys Compd. 2014, 591, 105–109. [Google Scholar] [CrossRef]
- Liao, M.; Hu, L.; Fang, Y.; Zhang, J.; Sun, H.; Xu, S.; Zhang, L. Upconversion properties of Er3+, Yb3+ and Tm3+ codoped fluorophosphate glasses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 68, 531–535. [Google Scholar] [CrossRef]
- Yan, D.; Zhu, J.; Wu, H.; Yang, Z.; Qiu, J.; Song, Z.; Yu, X.; Yang, Y.; Zhou, D.; Yin, Z.; et al. Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal. J. Mater. Chem. 2012, 22, 18558–18563. [Google Scholar] [CrossRef]
- Shi, D.M.; Qian, Q. Spectroscopic properties and energy transfer in Ga2O3–Bi2O3–PbO–GeO2 glasses doped with Er3+ and Tm3+. Phys. B Condens. Matter 2010, 405, 2503–2507. [Google Scholar] [CrossRef]
- Kumar, V.; Pandey, A.; Ntwaeaborwa, O.M.; Swart, H.C. Energy transfer upconversion in Er3+-Tm3+ codoped sodium silicate glass. Phys. B Condens. Matter 2018, 535, 330–332. [Google Scholar] [CrossRef]
- Meijer, M.S.; Rojas-Gutierrez, P.A.; Busko, D.; Howard, I.A.; Bonnet, S. Absolute upconversion quantum yields of blue-emitting LiYF4:Yb3+,Tm3+ upconverting nanoparticles. Phys. Chem. Chem. Phys. 2018, 20, 22556–22562. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Song, F.; Zhou, A.; Gao, X.; Feng, M.; Ikram, M.; Hu, H.; Sang, X.; Liu, L. Tuning white light upconversion emission from Yb3+/Er3+/Tm3+ triply doped CaZrO3 by altering Tm3+ concentration and excitation power. J. Alloys Compd. 2020, 835, 155286. [Google Scholar] [CrossRef]
- Antic-Fidancev, E.; Holsa, J.; Lastusaari, M. Crystal field energy levels of Eu3+ and Yb3+ in the C2 and S6 sites of the cubic C-type R2O3. J. Phys. Condens. Matter 2003, 15, 863–876. [Google Scholar] [CrossRef]
- Xu, B.; Song, C.; Huang, R.; Song, J.; Liu, J. Luminescence properties related to energy transfer process and cross relaxation process of Y2O3: Yb3+/Er3+ thin films doped with K+ ion. Opt. Mater. 2021, 118, 111290. [Google Scholar] [CrossRef]
Er3+ Concentration (mol%) | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 1.0 | 1.4 | |
---|---|---|---|---|---|---|---|---|
Atom (%) | Y | 24.28 | 23.19 | 24.89 | 22.01 | 24.22 | 23.81 | 24.25 |
Zn | 20.35 | 19.86 | 20.31 | 20.89 | 19.28 | 20.22 | 19.77 | |
O | 51.79 | 53.26 | 51.14 | 53.13 | 52.44 | 51.41 | 51.12 | |
Yb | 3.21 | 3.19 | 3.02 | 3.32 | 3.22 | 3.18 | 3.33 | |
Tm | 0.18 | 0.18 | 0.22 | 0.16 | 0.21 | 0.17 | 0.20 | |
Er | 0.19 | 0.32 | 0.42 | 0.49 | 0.63 | 1.21 | 1.33 |
Er3+ Concentration (mol%) | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 1.0 | 1.4 |
---|---|---|---|---|---|---|---|
Crystallite size (nm) | 261 | 278 | 257 | 275 | 277 | 280 | 256 |
Er3+ Concentration (mol%) | Median Size (nm) | Average Grain Size (nm) | Fitting Residual Error |
---|---|---|---|
0.6 | 872 | 1185 | 0.095% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Song, C.; Song, J.; Huang, R.; Lin, Z.; Zhang, Y.; Lin, S.; Guo, Y.; Chen, G.; Song, J. Tunable Emission and Color Temperature of Yb3+/Er3+/Tm3+-Tridoped Y2O3-ZnO Ceramic Nano-Phosphors Using Er3+ Concentration and Excitation Pump Power. Nanomaterials 2022, 12, 2107. https://doi.org/10.3390/nano12122107
Xu B, Song C, Song J, Huang R, Lin Z, Zhang Y, Lin S, Guo Y, Chen G, Song J. Tunable Emission and Color Temperature of Yb3+/Er3+/Tm3+-Tridoped Y2O3-ZnO Ceramic Nano-Phosphors Using Er3+ Concentration and Excitation Pump Power. Nanomaterials. 2022; 12(12):2107. https://doi.org/10.3390/nano12122107
Chicago/Turabian StyleXu, Boxu, Chao Song, Jie Song, Rui Huang, Zhenxu Lin, Yi Zhang, Shaomin Lin, Yanqing Guo, Guangxu Chen, and Jun Song. 2022. "Tunable Emission and Color Temperature of Yb3+/Er3+/Tm3+-Tridoped Y2O3-ZnO Ceramic Nano-Phosphors Using Er3+ Concentration and Excitation Pump Power" Nanomaterials 12, no. 12: 2107. https://doi.org/10.3390/nano12122107
APA StyleXu, B., Song, C., Song, J., Huang, R., Lin, Z., Zhang, Y., Lin, S., Guo, Y., Chen, G., & Song, J. (2022). Tunable Emission and Color Temperature of Yb3+/Er3+/Tm3+-Tridoped Y2O3-ZnO Ceramic Nano-Phosphors Using Er3+ Concentration and Excitation Pump Power. Nanomaterials, 12(12), 2107. https://doi.org/10.3390/nano12122107