Influence of Electronic Non-Equilibrium on Energy Distribution and Dissipation in Aluminum Studied with an Extended Two-Temperature Model
Abstract
:1. Introduction
2. Theoretical Model
2.1. Two Temperatures and a Non-Equilibrium System
2.2. Time Evolution of the Non-Equilibrium System
2.3. Improvements as Compared to the Work of G.D. Tsibidis
3. Results
3.1. Temperature and Energies
3.2. Electron Distribution Function
3.3. Comparison to Kinetic Description
3.4. Connection to Experiments
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Simulation and Material Parameters
Appendix A.1. Heat Capacities
Appendix A.2. Laser Setup
Appendix A.3. Relaxation Time Parameters
Appendix A.4. Miscellaneous
References
- Anisimov, S.I.; Luk’yanchuk, B.S. Selected problems of laser ablation theory. Phys.-Uspekhi 2002, 45, 293. [Google Scholar] [CrossRef] [Green Version]
- Chichkov, B.N.; Momma, C.; Nolte, S.; Alvensleben, F.; Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Lu, W.E.; Zhang, Y.L.; Zheng, M.L.; Jia, Y.P.; Liu, J.; Dong, X.Z.; Zhao, Z.S.; Li, C.B.; Xia, Y.; Ye, T.C.; et al. Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction. Opt. Mater. Express 2013, 3, 1660–1673. [Google Scholar] [CrossRef]
- Costache, F.; Kouteva-Arguirova, S.; Reif, J. Sub–damage–threshold femtosecond laser ablation from crystalline Si: Surface nanostructures and phase transformation. Appl. Phys. A 2004, 79, 1429–1432. [Google Scholar] [CrossRef]
- Balling, P.; Schou, J. Femtosecond-laser ablation dynamics of dielectrics: Basics and applications for thin films. Rep. Prog. Phys. 2013, 76, 036502. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Venugopalan, V. Mechanisms of Pulsed Laser Ablation of Biological Tissues. Chem. Rev. 2003, 103, 577–644. [Google Scholar] [CrossRef] [Green Version]
- Vogel, A.; Noack, J.; Hüttman, G.; Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 2005, 81, 1015. [Google Scholar] [CrossRef]
- Reif, J. Basic Physics of Femtosecond Laser Ablation. In Laser-Surface Interactions for New Materials Production: Tailoring Structure and Properties; Miotello, A., Ossi, P.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 19–41. [Google Scholar] [CrossRef]
- Rizvi, N.H. Femtosecond laser micromachining: Current status and applications. Riken Rev. 2003, 50, 107–112. [Google Scholar]
- Vorobyev, A.Y.; Guo, C. Direct Femtosecond Laser Surface Nano/Microstructuring and Its Applications. Laser Photonics Rev. 2013, 7, 385–407. [Google Scholar] [CrossRef]
- Bäuerle, D. Laser Processing and Chemistry; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Ostendorf, A.; Bauer, T.; Korte, F.; Howorth, J.R.; Momma, C.; Rizvi, N.H.; Saviot, F.; Salin, F. Development of an industrial femtosecond laser micromachining system. In Commercial and Biomedical Applications of Ultrafast and Free-Electron Lasers; International Society for Optics and Photonics: Bellingham, WA, USA, 2002; Volume 4633, pp. 128–135. [Google Scholar]
- Petek, H.; Ogawa, S. Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci. 1997, 56, 239–310. [Google Scholar] [CrossRef]
- Sundaram, S.; Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 2002, 1, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Rethfeld, B.; Sokolowski-Tinten, K.; von der Linde, D.; Anisimov, S.I. Timescales in the response of materials to femtosecond laser excitation. Appl. Phys. Mater. Sci. Process. 2004, 79, 767–769. [Google Scholar] [CrossRef]
- Fann, W.S.; Storz, R.; Tom, H.W.K.; Bokor, J. Electron thermalization in gold. Phys. Rev. B 1992, 46, 13592–13595. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.K.; Vallée, F.; Acioli, L.H.; Ippen, E.P.; Fujimoto, J.G. Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B 1994, 50, 15337–15348. [Google Scholar] [CrossRef]
- Schmuttenmaer, C.; Aeschlimann, M.; Elsayed-Ali, H.; Miller, R.; Mantell, D.; Cao, J.; Gao, Y. Time-resolved two-photon photoemission from Cu (100): Energy dependence of electron relaxation. Phys. Rev. B 1994, 50, 8957. [Google Scholar] [CrossRef]
- Groeneveld, R.H.M.; Sprik, R.; Lagendijk, A. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Phys. Rev. B 1995, 51, 11433–11445. [Google Scholar] [CrossRef] [Green Version]
- Girardeau-Montaut, J.P.; Girardeau-Montaut, C. Theory of ultrashort nonlinear multiphoton photoelectric emission from metals. Phys. Rev. B 1995, 51, 13560–13567. [Google Scholar] [CrossRef]
- Del Fatti, N.; Voisin, C.; Achermann, M.; Tzortzakis, S.; Christofilos, D.; Vallée, F. Nonequilibrium electron dynamics in noble metals. Phys. Rev. B 2000, 61, 16956–16966. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Marienfeld, A.; Aeschlimann, M. Hot electron lifetimes in metals probed by time-resolved two-photon photoemission. Prog. Surf. Sci. 2015, 90, 319–376. [Google Scholar] [CrossRef]
- Hofherr, M.; Maldonado, P.; Schmitt, O.; Berritta, M.; Bierbrauer, U.; Sadashivaiah, S.; Schellekens, A.J.; Koopmans, B.; Steil, D.; Cinchetti, M.; et al. Speed and efficiency of femtosecond spin current injection into a nonmagnetic material. Phys. Rev. B 2017, 96, 100403(R). [Google Scholar] [CrossRef] [Green Version]
- Beyazit, Y.; Beckord, J.; Zhou, P.; Meyburg, J.; Kühne, F.; Diesing, D.; Ligges, M.; Bovensiepen, U. Local and Nonlocal Electron Dynamics of Au/Fe/MgO (001) Heterostructures Analyzed by Time-Resolved Two-Photon Photoemission Spectroscopy. Phys. Rev. Lett. 2020, 125, 076803. [Google Scholar] [CrossRef] [PubMed]
- Briones, J.Z.; Schneider, H.C.; Rethfeld, B. Monte Carlo simulation of ultrafast nonequilibrium spin and charge transport in iron. J. Phys. Commun. 2022, 6, 035001. [Google Scholar] [CrossRef]
- Medvedev, N.; Zastrau, U.; Förster, E.; Gericke, D.O.; Rethfeld, B. Short-Time Electron Dynamics in Aluminum Excited by Femtosecond Extreme Ultraviolet Radiation. Phys. Rev. Lett. 2011, 107, 165003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silaeva, E.P.; Bevillon, E.; Stoian, R.; Colombier, J.P. Ultrafast electron dynamics and orbital-dependent thermalization in photoexcited metals. Phys. Rev. B 2018, 98, 094306. [Google Scholar] [CrossRef] [Green Version]
- Dewhurst, J.K.; Elliott, P.; Shallcross, S.; Gross, E.K.U.; Sharma, S. Laser-Induced Intersite Spin Transfer. Nano Lett. 2018, 18, 1842–1848. [Google Scholar] [CrossRef] [Green Version]
- Stuart, B.C.; Feit, M.D.; Herman, S.; Rubenchik, A.M.; Shore, B.W.; Perry, M.D. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 1996, 53, 1749–1761. [Google Scholar] [CrossRef] [Green Version]
- Bejan, D.; Raṣeev, G. Nonequilibrium electron distribution in metals. Phys. Rev. B 1997, 55, 4250–4256. [Google Scholar] [CrossRef]
- Nenno, D.M.; Kaltenborn, S.; Schneider, H.C. Boltzmann transport calculation of collinear spin transport on short timescales. Phys. Rev. B 2016, 94, 115102. [Google Scholar] [CrossRef]
- Knorren, R.; Bennemann, K.H.; Burgermeister, R.; Aeschlimann, M. Dynamics of excited electrons in copper and ferromagnetic transition metals: Theory and experiment. Phys. Rev. B 2000, 61, 9427–9440. [Google Scholar] [CrossRef] [Green Version]
- Mueller, B.Y.; Rethfeld, B. Relaxation dynamics in laser-excited metals under nonequilibrium conditions. Phys. Rev. B 2013, 87, 035139. [Google Scholar] [CrossRef]
- Baranov, V.; Kabanov, V. Theory of electronic relaxation in a metal excited by an ultrashort optical pump. Phys. Rev. B 2014, 89, 125102. [Google Scholar] [CrossRef] [Green Version]
- Weber, S.T.; Rethfeld, B. Phonon-induced long-lasting nonequilibrium in the electron system of a laser-excited solid. Phys. Rev. B 2019, 99, 174314. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, D.A. The Boltzmann Equation in the Theory of Electrical Conduction in Metals. Proc. Phys. Soc. 1958, 71, 585–596. [Google Scholar] [CrossRef]
- Anisimov, S.I.; Kapeliovich, B.L.; Perel’man, T.L. Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP 1974, 39, 375–377. [Google Scholar]
- Schoenlein, R.; Lin, W.; Fujimoto, J.; Eesley, G. Femtosecond studies of nonequilibrium electronic processes in metals. Phys. Rev. Lett. 1987, 58, 1680. [Google Scholar] [CrossRef]
- Rämer, A.; Osmani, O.; Rethfeld, B. Laser damage in silicon: Energy absorption, relaxation, and transport. J. Appl. Phys. 2014, 116, 053508. [Google Scholar] [CrossRef] [Green Version]
- Mueller, B.Y.; Rethfeld, B. Thermodynamic μT model of ultrafast magnetization dynamics. Phys. Rev. B 2014, 90, 144420. [Google Scholar] [CrossRef] [Green Version]
- Ndione, P.D.; Weber, S.T.; Rethfeld, B.; Gericke, D.O. Density response to short-pulse excitation in gold. Contrib. Plasma Phys. 2019, 59, e201800186. [Google Scholar] [CrossRef]
- Ndione, P.D.; Weber, S.T.; Gericke, D.O.; Rethfeld, B. Nonequilibrium band occupation and optical response of gold after ultrafast XUV excitation. Sci. Rep. 2022, 12, 4693. [Google Scholar] [CrossRef]
- Tsibidis, G.D. Ultrafast dynamics of non-equilibrium electrons and strain generation under femtosecond laser irradiation of Nickel. Appl. Phys. A 2018, 124, 311. [Google Scholar] [CrossRef] [Green Version]
- Carpene, E. Ultrafast laser irradiation of metals: Beyond the two-temperature model. Phys. Rev. B 2006, 74, 024301. [Google Scholar] [CrossRef]
- Maldonado, P.; Carva, K.; Flammer, M.; Oppeneer, P.M. Theory of out-of-equilibrium ultrafast relaxation dynamics in metals. Phys. Rev. B 2017, 96, 174439. [Google Scholar] [CrossRef] [Green Version]
- Waldecker, L.; Bertoni, R.; Ernstorfer, R.; Vorberger, J. Electron-Phonon Coupling and Energy Flow in a Simple Metal beyond the Two-Temperature Approximation. Phys. Rev. X 2016, 6, 021003. [Google Scholar] [CrossRef] [Green Version]
- Kaganov, M.I.; Lifshitz, I.M.; Tanatarov, L.V. Relaxation between Electrons and the Chrystalline Lattice. Sov. Phys. JETP 1957, 4, 173–178. [Google Scholar]
- Pietanza, L.; Colonna, G.; Longo, S.; Capitelli, M. Electron and phonon relaxation in metal films perturbed by a femtosecond laser pulse. Appl. Phys. A 2004, 79, 1047–1050. [Google Scholar] [CrossRef]
- Rethfeld, B.; Kaiser, A.; Vicanek, M.; Simon, G. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 2002, 65, 214303. [Google Scholar] [CrossRef] [Green Version]
- Pines, D.; Noziéres, P. The Theory of Quantum Liquids, 3rd ed.; Perseus Books Publishing: Cambridge, MA, USA, 1999. [Google Scholar]
- Kaveh, M.; Wiser, N. Electron-electron scattering in conducting materials. Adv. Phys. 1984, 33, 257–372. [Google Scholar] [CrossRef]
- Rethfeld, B.; Ivanov, D.S.; Garcia, M.E.; Anisimov, S.I. Modelling ultrafast laser ablation. J. Phys. Appl. Phys. 2017, 50, 193001. [Google Scholar] [CrossRef]
- Knoesel, E.; Hotzel, A.; Wolf, M. Ultrafast dynamics of hot electrons and holes in copper: Excitation, energy relaxation, and transport effects. Phys. Rev. B 1998, 57, 12812–12824. [Google Scholar] [CrossRef] [Green Version]
- Fann, W.S.; Storz, R.; Tom, H.W.K.; Bokor, J. Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films. Phys. Rev. Lett. 1992, 68, 2834–2837. [Google Scholar] [CrossRef]
- Pietanza, L.D.; Colonna, G.; Longo, S.; Capitelli, M. Non-equilibrium electron and phonon dynamics in metals under femtosecond laser pulses. Eur. Phys. J. D 2007, 45, 369–389. [Google Scholar] [CrossRef]
- Weber, S.T.; Rethfeld, B. Laser-excitation of electrons and nonequilibrium energy transfer to phonons in copper. Appl. Surf. Sci. 2017, 417, 64–68. [Google Scholar] [CrossRef]
- Schmidt, O.; Bauer, M.; Wiemann, C.; Porath, R.; Scharte, M.; Andreyev, O.; Schönhense, G.; Aeschlimann, M. Time-resolved two photon photoemission electron microscopy. Appl. Phys. B 2002, 74, 223–227. [Google Scholar] [CrossRef]
- Hartelt, M.; Terekhin, P.N.; Eul, T.; Mahro, A.K.; Frisch, B.; Prinz, E.; Rethfeld, B.; Stadtmüller, B.; Aeschlimann, M. Energy and Momentum Distribution of Surface Plasmon-Induced Hot Carriers Isolated via Spatiotemporal Separation. ACS Nano 2021, 15, 19559–19569. [Google Scholar] [CrossRef]
- Weinelt, M. Time-resolved two-photon photoemission from metal surfaces. J. Phys. Condens. Matter 2002, 14, R1099. [Google Scholar] [CrossRef]
- Lisowski, M.; Loukakos, P.; Bovensiepen, U.; Stähler, J.; Gahl, C.; Wolf, M. Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001). Appl. Phys. A 2004, 78, 165–176. [Google Scholar] [CrossRef]
- Mathias, S.; Shaw, J.M.; Turgut, E.; Grychtol, P.; Adam, R.; Rudolf, D.; Nembach, H.T.; Silva, T.J.; Aeschlimann, M.; Schneider, C.M.; et al. Ultrafast element-specific magnetization dynamics of complex magnetic materials on a table-top. J. Electron Spectrosc. Relat. Phenom. 2013, 189, 164–170. [Google Scholar] [CrossRef]
- Hofherr, M.; Häuser, S.; Dewhurst, J.; Tengdin, P.; Sakshath, S.; Nembach, H.T.; Weber, S.T.; Shaw, J.M.; Silva, T.J.; Kapteyn, H.; et al. Ultrafast optically induced spin transfer in ferromagnetic alloys. Sci. Adv. 2020, 6, eaay8717. [Google Scholar] [CrossRef] [Green Version]
- Ibach, H.; Lüth, H. Festkörperphysik, 5th ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1999. [Google Scholar]
- Hunklinger, S. Festkörperphysik, 1st ed.; Oldenburg: München, Germany; Wien, Austria, 2007. [Google Scholar]
- Lin, Z.; Zhigilei, L.V.; Celli, V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 2008, 77, 075133. [Google Scholar] [CrossRef] [Green Version]
- Lide, D.R.; Baysinger, G.; Berger, L.I.; Goldberg, R.N.; Kehiaian, H.V.; Kuchitsu, K.; Rosenblatt, G.; Roth, D.L.; Zwillinger, D. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Rakić, A.D. Algorithm for the determination of intrinsic optical constants of metal films: Applications to aluminium. Appl. Opt. 1995, 34, 4755–4767. [Google Scholar] [CrossRef]
- Silaeva, E.; Saddier, L.; Colombier, J.P. Drude-Lorentz Model for Optical Properties of Photoexcited Transition Metals under Electron-Phonon Nonequilibrium. Appl. Sci. 2021, 11, 9902. [Google Scholar] [CrossRef]
- Fourment, C.; Deneuville, F.; Descamps, D.; Dorchies, F.; Petit, S.; Peyrusse, O. Experimental determination of temperature-dependent electron-electron collision frequency in isochorically heated warm dense gold. Phys. Rev. B 2014, 89, 161110. [Google Scholar] [CrossRef]
- Blumenstein, A.; Zijlstra, E.; Ivanov, D.; Weber, S.; Zier, T.; Kleinwort, F.; Rethfeld, B.; Ihlemann, J.; Simon, P.; Garcia, M. Transient optics of gold during laser irradiation: From first principles to experiment. Phys. Rev. B 2020, 101, 165140. [Google Scholar] [CrossRef]
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics, 3rd ed.; Oldenbourg: München, Germany; Wien, Austria, 2007. [Google Scholar]
- Kittel, C. Einführung in Die Festkörperphysik, 15th ed.; Oldenbourg Verlag: München, Germany, 2013. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uehlein, M.; Weber, S.T.; Rethfeld, B. Influence of Electronic Non-Equilibrium on Energy Distribution and Dissipation in Aluminum Studied with an Extended Two-Temperature Model. Nanomaterials 2022, 12, 1655. https://doi.org/10.3390/nano12101655
Uehlein M, Weber ST, Rethfeld B. Influence of Electronic Non-Equilibrium on Energy Distribution and Dissipation in Aluminum Studied with an Extended Two-Temperature Model. Nanomaterials. 2022; 12(10):1655. https://doi.org/10.3390/nano12101655
Chicago/Turabian StyleUehlein, Markus, Sebastian T. Weber, and Baerbel Rethfeld. 2022. "Influence of Electronic Non-Equilibrium on Energy Distribution and Dissipation in Aluminum Studied with an Extended Two-Temperature Model" Nanomaterials 12, no. 10: 1655. https://doi.org/10.3390/nano12101655
APA StyleUehlein, M., Weber, S. T., & Rethfeld, B. (2022). Influence of Electronic Non-Equilibrium on Energy Distribution and Dissipation in Aluminum Studied with an Extended Two-Temperature Model. Nanomaterials, 12(10), 1655. https://doi.org/10.3390/nano12101655