Green Synthesis of Ni@PEDOT and Ni@PEDOT/Au (Core@Shell) Inverse Opals for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction of Colloidal Crystals
2.2. Preparation of Ni Inverse Opals
2.3. Fabrication of Ni@PEDOT and Ni@PEDOT/Au Inverse Opals
2.4. Materials Characterization
2.5. Detection of AA, DA, and UA
3. Results
3.1. Fabrication of Colloidal Crystals and Their Inverse opals
3.2. Materials Characterization of Ni@PEDOT and Ni@PEDOT/Au Inverse Opals
3.3. Electrochemical Detection of AA, DA, and UA
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chew, B.P. Antioxidant vitamins affect food animal immunity and health. J. Nutr. 1995, 125, 1804S–1808S. [Google Scholar] [PubMed]
- Figueroa-Méndez, R.; Rivas-Arancibia, S. Vitamin C in health and disease: Its role in the metabolism of cells and redox state in the brain. Front Physiol. 2015, 6, 397. [Google Scholar] [CrossRef] [PubMed]
- Faure, H.; Preziosi, P.; Roussel, A.; Bertrais, S.; Galan, P.; Hercberg, S.; Favier, A. Factors influencing blood concentration of retinol, alpha-tocopherol, vitamin C, and beta-carotene in the French participants of the SU.VI.MAX trial. Eur. J. Clin. Nutr. 2006, 60, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jeon, M.; Paeng, K.J.; Paeng, I.R. Competitive enzyme-linked immunosorbent assay for the determination of catecholamine, dopamine in serum. Anal. Chim. Acta. 2008, 619, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, B.W.; Nemeroff, C.B. The role of dopamine in the pathophysiology of depression. Arch. Gen. Psych. 2007, 64, 327–337. [Google Scholar] [CrossRef]
- Wang, G.J.; Volkow, N.D.; Thanos, P.K.; Fowler, J.S. Similarity between obesity and drug addiction as assessed by neurofunctional imaging. J. Addict. Dis. 2004, 23, 39–53. [Google Scholar] [CrossRef]
- Lee, T.; Seeman, P.; Rajput, A.; Farley, I.J.; Hornykiewicz, O. Receptor basis for dopaminergic supersensitivity in Parkinson’s disease. Nature 1978, 273, 59–61. [Google Scholar] [CrossRef]
- Waring, W.S.; Corvery, A.; Mishra, V.; Shenkin, A.; Webb, D.J.; Maxwell, S.R.J. Uric acid reduces exercise-induced oxidative stress in healthy adults. Clin. Sci. (Lond.) 2003, 105, 425–430. [Google Scholar] [CrossRef]
- Feig, D.I.; Kang, D.; Johnson, R.J.; Haig, A. Uric acid and cardiovascular risk. N. Engl. J. Med. 2008, 359, 1811–1821. [Google Scholar] [CrossRef]
- Siu, Y.P.; Leung, K.T.; Tong, M.K.H.; Kwan, T.H. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am. J. Kidney Dis. 2006, 47, 51–59. [Google Scholar] [CrossRef]
- Rock, K.L.; Kataoka, H.; Lai, J.J. Uric acid as a danger signal in gout and its comorbidities. Nat. Rev. Rheumatol. 2013, 9, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Jeyalakshmi, S.R.; Kumar, S.S.; Mathiyarasu, J.; Phani, K.L.N.; Yegnaraman, V. Simultaneous determination of ascorbic acid, dopamine and uric acid using PEDOT polymer modified electrodes. Indian J. Chem. Sect. A Inorg. Phys. Theor. Anal. Chem. 2007, 46, 957–961. [Google Scholar]
- Zhang, W.; Yuan, R.; Chai, Y.Q.; Zhang, Y.; Chen, S.H. A simple strategy based on lanthanum-multiwalled carbon nanotube nanocomposites for simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Sens. Actuators B Chem. 2012, 166–167, 601–607. [Google Scholar] [CrossRef]
- Yasmin, S.; Ahmed, M.S.; Park, D.; Jeon, S. Nitrogen-doped graphene supported cobalt oxide for sensitive determination of dopamine in presence of high level ascorbic acid. J. Electrochem. Soc. 2016, 163, B491–B498. [Google Scholar] [CrossRef]
- Cai, Z.; Ye, Y.; Wan, X.; Liu, J.; Yang, S.; Xia, Y.; Li, G.; He, Q. Morphology–dependent electrochemical sensing properties of iron oxide–graphene oxide nanohybrids for dopamine and uric acid. Nanomaterials 2019, 9, 835. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lopa, N.S.; Ju, M.J.; Lee, J.J. Highly sensitive and simultaneous detection of dopamine and uric acid at graphene nanoplatelet-modified fluorine-doped tin oxide electrode in the presence of ascorbic acid. J. Electroanal. Chem. 2017, 792, 54–60. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ahmed, A.; Lee, J.J. A conducting poly(N-(1-Naphthyl)ethylenediamine dihydrochloride) nanofibers for the sensitive and interference-free detection of dopamine. J. Electrochem. Soc. 2018, 165, B89–B95. [Google Scholar] [CrossRef]
- Vasantha, V.S.; Chen, S.M. Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes. J. Electroanal. Chem. 2006, 592, 77–87. [Google Scholar] [CrossRef]
- Xu, G.; Li, B.; Cui, X.T.; Ling, L.; Luo, X. Electrodeposited conducting polymer PEDOT doped with pure carbon nanotubes for the detection of dopamine in the presence of ascorbic acid. Sens. Actuators B Chem. 2013, 188, 405–410. [Google Scholar] [CrossRef]
- Kumar, S.S.; Mathiyarasu, J.; Phani, K.L.N.; Yegnaraman, V. Simultaneous determination of dopamine and ascorbic acid on poly (3,4-ethylenedioxythiophene) modified glassy carbon electrode. J. Solid State Electrochem. 2006, 10, 905–913. [Google Scholar] [CrossRef]
- Talib, N.A.A.; Salam, F.; Sulaiman, Y. Development of highly sensitive immunosensor for clenbuterol detection by using poly(3,4-ethylenedioxythiophene)/graphene oxide modified screen-printed carbon electrode. Sensors 2018, 18, 4324. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Ju, F.; Li, G.; Ma, L. Smartphone-based electrochemical potentiostat detection system using PEDOT:PSS/chitosan/graphene modified screen-printed electrodes for dopamine detection. Sensors 2020, 20, 2781. [Google Scholar] [CrossRef] [PubMed]
- Varodi, C.; Pogacean, F.; Gheorghe, M.; Mirel, V.; Coros, M.; Barbu-Tudoran, L.; Stefan-van Staden, R.I.; Pruneanu, S. Stone paper as a new substrate to fabricate flexible screen-printed electrodes for the electrochemical detection of dopamine. Sensors 2020, 20, 3609. [Google Scholar] [CrossRef] [PubMed]
- Atta, N.F.; Galal, A.; El-Ads, E.H. Gold nanoparticles-coated poly(3,4-ethylene-dioxythiophene) for the selective determination of sub-nano concentrations of dopamine in presence of sodium dodecyl sulfate. Electrochim. Acta 2012, 69, 102–111. [Google Scholar] [CrossRef]
- Mathiyarasu, J.; Senthilkumar, S.; Phani, K.L.N.; Yegnaraman, V. PEDOT-Au nanocomposite film for electrochemical sensing. Mater. Lett. 2008, 62, 571–573. [Google Scholar] [CrossRef]
- Zhang, O.; Wen, Y.; Xu, J.; Lu, L.; Duan, X.; Yu, H. One-step synthesis of poly (3,4-ethylenedioxythiophene)—Au composites and their application for the detection of nitrite. Synth. Met. 2013, 164, 47–51. [Google Scholar] [CrossRef]
- Tsai, T.; Lin, K.; Chen, S. Electrochemical synthesis of poly (3,4-ethylenedioxythiophene) and gold nanocomposite and its application for hypochlorite sensor. Int. J. Electrochem. Sci. 2011, 6, 2672–2687. [Google Scholar]
- Chiappini, A.; Pasquardini, L.; Nodehi, S.; Armellini, C.; Bazzanella, N.; Lunelli, L.; Pelli, S.; Ferrari, M.; Pietralunga, S.M. Fluorescent aptamer immobilization on inverse colloidal crystals. Sensors 2018, 18, 4326. [Google Scholar] [CrossRef]
- Liao, C.H.; Hsieh, Y.C.; Huang, B.H.; Pai, C.H.; Wu, P.W. Free-standing Au inverse opals for enhanced glucose sensing. J. Alloys Compd. 2016, 684, 453–460. [Google Scholar] [CrossRef]
- Luo, R.; Feng, Z.; Shen, G.; Xiu, Y.; Zhou, Y.; Niu, X. Acetylcholinesterase biosensor based on mesoporous hollow carbon spheres/core-shell magnetic nanoparticles-modified electrode for the detection of organophosphorus pesticides. Sensors 2018, 18, 4429. [Google Scholar] [CrossRef]
- Rick, J.; Tsai, M.C.; Hwang, B.J. Biosensors incorporating bimetallic nanoparticles. Nanomaterials 2016, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Belaidi, F.S.; Civélas, A.; Castagnola, V.; Tsopela, A.; Mazenq, L.; Gros, P.; Launay, J.; Temple-Boyer, P. PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chemical 2015, 214, 1–9. [Google Scholar] [CrossRef]
- Sakmeche, N.; Aeiyach, S.; Aaron, J.J.; Jouini, M.; Lacroix, J.C.; Lacaze, P.C. Improvement of the electrosynthesis and physicochemical properties of poly(3,4-ethylenedioxythiophene) using a sodium dodecyl sulfate micellar aqueous medium. Langmuir 1999, 15, 2566–2574. [Google Scholar] [CrossRef]
- Shao, T.; Sun, L.; Yang, C.; Ye, X.; Chen, S.; Luo, X. Convenient and efficient fabrication of colloidal crystals based on solidification-induced colloidal assembly. Nanomaterials 2019, 9, 575. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Huang, J.; Zeng, Y.; Sun, L.X.; Geng, F.; Liu, H.J.; Wang, F.R.; Jiang, X.D.; Wu, W.D.; Zheng, W.G. Monolayer colloidal crystals by modified air-water interface self-assembly approach. Nanomaterials 2017, 7, 291. [Google Scholar] [CrossRef]
- Huang, B.H.; Wang, C.C.; Liao, C.H.; Wu, P.W.; Song, Y.F. Structural characterization of colloidal crystals and inverse opals using transmission X-ray microscopy. J. Colloid Interface Sci. 2014, 426, 199–205. [Google Scholar] [CrossRef]
- Hung, P.S.; Liao, C.H.; Chou, Y.S.; Wang, G.R.; Wang, C.J.; Chung, W.A.; Wu, P.W. High throughput fabrication of large-area colloidal crystals via a two-stage electrophoretic deposition method. Electrochim. Acta 2019, 317, 52–60. [Google Scholar] [CrossRef]
- Lai, C.H.; Huang, Y.J.; Wu, P.W.; Chen, L.Y. Rapid fabrication of cylindrical colloidal crystals and their inverse opals. J. Electrochem. Soc. 2010, 157, 23–27. [Google Scholar] [CrossRef][Green Version]
- Lai, C.H.; Yang, Y.L.; Chen, L.Y.; Huang, Y.J.; Chen, J.Y.; Wu, P.W.; Cheng, Y.T.; Huang, Y.T. Effect of crystallinity on the optical reflectance of cylindrical colloidal crystals. J. Electrochem. Soc. 2011, 158, 37–40. [Google Scholar] [CrossRef]
- Hung, P.S.; Chou, Y.S.; Wang, G.R.; Chung, W.A.; Wu, P.W. Fabrication of TiO2-coated nanostructured Ni foams for improved mechanical properties. Ceram. Inter. 2020, 46, 3968–3975. [Google Scholar] [CrossRef]
- Chen, L.Y.; Lai, C.H.; Wu, P.W.; Fan, S.K. Electrowetting of superhydrophobic ZnO inverse opals. J. Electrochem. Soc. 2011, 158, P93–P99. [Google Scholar] [CrossRef]
- Liao, C.H.; Hung, P.S.; Cheng, Y.; Wu, P.W. Combination of microspheres and sol-gel electrophoresis for the formation of large-area ordered macroporous SiO2. Electrochem. Commun. 2017, 85, 6–10. [Google Scholar] [CrossRef]
- Poverenov, E.; Li, M.; Bitler, A.; Bendikov, M. Major effect of electropolymerization solvent on morphology and electrochromic properties of PEDOT films. Chem. Mater. 2010, 22, 4019–4025. [Google Scholar] [CrossRef]
- Musumeci, C.; Hutchison, J.A.; Samori, P. Controlling the morphology of conductive PEDOT by in situ electropolymerization: From thin films to nanowires with variable electrical properties. Nanoscale 2013, 5, 7756–7761. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, O.; Xu, J.; Wen, Y.; Duan, X.; Yu, H. A facile one-step redox route for the synthesis of graphene/poly (3,4-ethylenedioxythiophene) nanocomposite and their applications in biosensing. Sens. Actuators B Chem. 2013, 181, 567–574. [Google Scholar] [CrossRef]
- King, Z.A.; Shaw, C.M.; Spanninga, S.A.; Martin, D.C. Structural, chemical and electrochemical characterization of poly (3,4-Ethylenedioxythiophene) (PEDOT) prepared with various counter-ions and heat treatments. Polymer 2011, 52, 1302–1308. [Google Scholar] [CrossRef]
- Selvaganesh, S.V.; Mathiyarasu, J.; Phani, K.L.N.; Vegnaraman, V. Chemical synthesis of PEDOT–Au nanocomposite. Nanoscale Res. Lett. 2007, 2, 546. [Google Scholar] [CrossRef]
- Han, D.; Yang, G.; Song, J.; Niu, L.; Ivaska, A. Morphology of electrodeposited poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate) films. J. Electroanal. Chem. 2007, 602, 24–28. [Google Scholar] [CrossRef]
- Stavytska-Barba, M.; Kelley, A.M. Surface-enhanced Raman study of the interaction of PEDOT:PSS with plasmonically active nanoparticles. J. Phy. Chem. C 2010, 114, 6822–6830. [Google Scholar] [CrossRef]
- Culebras, M.; Gómez, C.M.; Cantarero, A. Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction. J. Mater. Chem. A 2014, 2, 10109–10115. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Yue, R.; Yang, T.; Gao, L. Facile one-pot synthesis of Au–PEDOT/rGO nanocomposite for highly sensitive detection of caffeic acid in red wine sample. Electrochim. Acta 2016, 196, 1–12. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, D.; Yin, L.; Li, N.; Li, F.; Cheng, H. Oxygen bridges between NiO nanosheets and graphene for Improvement of lithium storage. ACS Nano 2012, 6, 3214–3223. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, S.; Crispin, X.; Uvdal, K.; Trzcinski, M.; Birgerson, J.; Groenendaal, L.; Louwet, F.; Salaneck, W.R. Light induced damage in poly(3,4-ethylenedioxythiophene) and its derivatives studied by photoelectron spectroscopy. Synth. Met. 2004, 141, 67–73. [Google Scholar] [CrossRef]
- Mitraka, E.; Jafari, M.J.; Vagin, M.; Liu, X.; Fahlman, M.; Ederth, T.; Berggren, M.; Jonsson, M.P.; Crispin, X. Oxygen-induced doping on reduced PEDOT. J. Mater. Chem. A 2017, 5, 4404–4412. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Biesinger, M.C.; Smart, R.S.C.; Mcintyre, N.S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779. [Google Scholar] [CrossRef]
- Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L. Biosensors and bioelectronics graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens. Bioelectron. 2010, 25, 1070–1074. [Google Scholar] [CrossRef]
- Selvam, S.P.; Chinnadayyala, S.R.; Cho, S.; Yun, K. Differential pulse voltammetric electrochemical sensor for the detection of etidronic acid in pharmaceutical samples by using rGO-Ag@SiO2/Au PCB. Nanomaterials 2020, 10, 1368. [Google Scholar] [CrossRef]
- Yu, S.; Luo, C.; Wang, L.; Peng, H.; Zhu, Z. Poly(3,4-ethylenedioxythiophene)-modified Ni/silicon microchannel plate electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Analyst 2018, 138, 1149–1155. [Google Scholar] [CrossRef]
- Fabregat, G.; Armelin, E.; Alemán, C. Selective detection of dopamine combining multilayers of conducting polymers with gold nanoparticles. J. Phys. Chem. B 2014, 118, 4669–4682. [Google Scholar] [CrossRef]
- Scavetta, E.; Mazzoni, R.; Mariani, F.; Margutta, R.G.; Bonfiglio, A.; Demelas, M.; Fiorilli, S.; Marzocchi, M.; Fraboni, B. Dopamine amperometric detection at a ferrocene clicked PEDOT:PSS coated electrode. J. Mater. Chem. B 2014, 2, 2861–2867. [Google Scholar] [CrossRef]
- Prathish, K.P.; Carvalho, R.C.; Brett, C.M.A. Electrochemical characterisation of poly(3,4-ethylenedioxythiophene) film modified glassy carbon electrodes prepared in deep eutectic solvents for simultaneous sensing of biomarkers. Electrochim. Acta 2016, 187, 704–713. [Google Scholar] [CrossRef]
Wavenumbers (cm−1) | Assignation |
---|---|
990 | Oxyethylene ring deformation |
1104 | C–O–C deformation |
1134 | 2LO phonon mode of NiO |
1256 | Cα-Cα (inter-ring) stretching |
1367 | Cα–Cβ stretching |
1427 | Symmetrical Cα=Cβ stretching |
1513–1563 | Asymmetrical Cα=Cβ stretching |
Rs (Ω) | Rct (Ω cm2) | Cdl (10−3 F cm2) | RD (Ω cm2) | |
---|---|---|---|---|
Planar Ni@PEDOT film | 33.9 | 5.9 | 5.4 | 222.5 |
Ni@PEDOT inverse opals | 32.5 | 7.6 | 0.5 | 94.7 |
Ni@PEDOT/Au inverse opals | 32.7 | 5.8 | 0.9 | 105.1 |
Planar Ni@PEDOT Film | Ni@PEDOT Inverse Opals | Ni@PEDOT/Au Inverse Opals | |||||||
---|---|---|---|---|---|---|---|---|---|
AA | DA | UA | AA | DA | UA | AA | DA | UA | |
a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
b | 20.30 | 20.30 | 14.67 | 10.88 | 10.88 | 4.93 | 5.98 | 5.98 | 2.98 |
c | 29.22 | 29.22 | 23.89 | 20.30 | 20.30 | 14.67 | 10.88 | 10.88 | 4.93 |
d | 43.45 | 43.45 | 36.90 | 29.22 | 29.22 | 23.89 | 20.30 | 20.30 | 14.67 |
e | 56.50 | 56.50 | 48.82 | 43.45 | 43.45 | 36.90 | 29.22 | 29.22 | 23.89 |
f | 68.46 | 68.46 | 59.75 | 56.50 | 56.50 | 48.82 | 43.45 | 43.45 | 36.90 |
g | 79.42 | 79.42 | 69.77 | 68.46 | 68.46 | 59.75 | 56.50 | 56.50 | 48.82 |
h | 89.47 | 89.47 | 78.96 | 79.42 | 79.42 | 69.77 | 89.47 | 89.47 | 78.96 |
i | 102.42 | 102.42 | 96.85 | 89.47 | 89.47 | 78.96 | 102.42 | 102.42 | 96.85 |
j | 113.38 | 113.38 | 112.00 | 113.38 | 113.38 | 112.00 | 113.38 | 113.38 | 112.00 |
k | 140.70 | 140.70 | 119.60 | 140.70 | 140.70 | 119.60 | 140.70 | 140.70 | 119.60 |
l | 162.56 | 162.56 | 125.68 | 162.56 | 162.56 | 125.68 | 162.56 | 162.56 | 125.68 |
m | 180.05 | 180.05 | 130.55 | 180.05 | 180.05 | 130.55 | 180.05 | 180.05 | 130.55 |
n | 194.04 | 194.04 | 134.44 | 194.04 | 194.04 | 134.44 | 194.04 | 194.04 | 134.44 |
Electrode | Oxidation Potential (V) | Resolution (V) | Sensitivity (μA cm−2 μM−1) | Detection Limit (μM) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AA | DA | UA | DA–AA | UA–DA | UA–AA | AA | DA | UA | AA | DA | UA | |
Planar Ni@PEDOT film | 0.05 | 0.21 | 0.33 | 0.16 | 0.12 | 0.28 | 0.13 | 0.40 | 0.71 | 29.22 | 20.3 | 14.67 |
Ni@PEDOT inverse opals | 0.01 | 0.21 | 0.33 | 0.20 | 0.13 | 0.32 | 0.15 | 0.58 | 1.23 | 10.88 | 10.88 | 4.93 |
Ni@PEDOT/Au inverse opals | −0.01 | 0.19 | 0.30 | 0.19 | 0.12 | 0.31 | 0.26 | 1.04 | 1.13 | 5.98 | 5.98 | 2.98 |
Electrode | Method | Solvent a | Linear Range (μM) | Sensitivity (μA2 μM−1 cm−1) | [Ref] | ||||
---|---|---|---|---|---|---|---|---|---|
AA | DA | UA | AA | DA | UA | ||||
Ferrocene clicked PEDOT:PSS coated electrode | DC b | H2O | N/A | 10–900 | N/A | N/A | 0.196 | N/A | [60] |
PEDOT-modified Ni/Si MCP electrode | DPV | acetonitrile | 20–1400 | 12–48 | 36–216 | 0.539 | 5.4 | 2.2 | [58] |
PEDOT/PNMPy/PEDOT/Au | CV | acetonitrile | N/A | 1–100 | N/A | 0.194 | 0.182 | 1.162 | [59] |
PEDOT-modified GC | DPV | acetonitrile | 500–3500 | 20–80 | 20-130 | 0.057 | 1.365 | 1.924 | [12] |
PEDOT-modified GC | DPV | deep eutectic solvent | 50–1600 | 5–180 | 5–180 | 0.086 | 1.46 | 0.54 | [61] |
PEDOT-modified GC | DPV | H2O | 300–1500 | 100–500 | N/A | 0.042 | 0.078 | N/A | [25] |
Ni@PEDOT/Au inverse opals | CV | H2O | 6–194 | 6–194 | 3–134.4 | 0.266 | 1.04 | 1.13 | this work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, P.-S.; Wang, G.-R.; Chung, W.-A.; Chiang, T.-T.; Wu, P.-W. Green Synthesis of Ni@PEDOT and Ni@PEDOT/Au (Core@Shell) Inverse Opals for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid. Nanomaterials 2020, 10, 1722. https://doi.org/10.3390/nano10091722
Hung P-S, Wang G-R, Chung W-A, Chiang T-T, Wu P-W. Green Synthesis of Ni@PEDOT and Ni@PEDOT/Au (Core@Shell) Inverse Opals for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid. Nanomaterials. 2020; 10(9):1722. https://doi.org/10.3390/nano10091722
Chicago/Turabian StyleHung, Pei-Sung, Guang-Ren Wang, Wei-An Chung, Tze-Ting Chiang, and Pu-Wei Wu. 2020. "Green Synthesis of Ni@PEDOT and Ni@PEDOT/Au (Core@Shell) Inverse Opals for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid" Nanomaterials 10, no. 9: 1722. https://doi.org/10.3390/nano10091722
APA StyleHung, P.-S., Wang, G.-R., Chung, W.-A., Chiang, T.-T., & Wu, P.-W. (2020). Green Synthesis of Ni@PEDOT and Ni@PEDOT/Au (Core@Shell) Inverse Opals for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid. Nanomaterials, 10(9), 1722. https://doi.org/10.3390/nano10091722