Two-Dimensional Indium Selenide for Sulphur Vapour Sensing Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Sci. Rep. 2004, 306, 666–670. [Google Scholar] [CrossRef]
- Gao, E.; Lin, S.Z.; Qin, Z.; Buehler, M.J.; Feng, X.Q.; Xu, Z. Mechanical exfoliation of two-dimensional materials. J. Mech. Phys. Solids 2018. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Y.; Sendeku, M.G.; Yin, L.; Zhan, X.; Wang, F.; Wang, Z.; He, J. Recent Progress in CVD Growth of 2D Transition Metal Dichalcogenides and Related Heterostructures. Adv. Mater. 2019, 31. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 2–5. [Google Scholar] [CrossRef]
- Zhang, X.X.; You, Y.; Zhao, S.Y.F.; Heinz, T.F. Experimental Evidence for Dark Excitons in Monolayer WSe2. Phys. Rev. Lett. 2015, 115, 1–6. [Google Scholar] [CrossRef]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Krečmarová, M.; Andres-Penares, D.; Fekete, L.; Ashcheulov, P.; Molina-Sánchez, A.; Canet-Albiach, R.; Gregora, I.; Mortet, V.; Martínez-Pastor, J.P.; Sánchez-Royo, J.F. Optical Contrast and Raman Spectroscopy Techniques Applied to Few-Layer 2D Hexagonal Boron Nitride. Nanomaterials 2019, 9, 1047. [Google Scholar] [CrossRef] [PubMed]
- Brotons-Gisbert, M.; Andres-Penares, D.; Suh, J.; Hidalgo, F.; Abargues, R.; Rodríguez-Cantó, P.J.; Segura, A.; Cros, A.; Tobias, G.; Canadell, E.; et al. Nanotexturing to Enhance Photoluminescent Response of Atomically Thin Indium Selenide with Highly Tunable Band Gap. Nano Lett. 2016. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Royo, J.F.; Muñoz-Matutano, G.; Brotons-Gisbert, M.; Martínez-Pastor, J.P.; Segura, A.; Cantarero, A.; Mata, R.; Canet-Ferrer, J.; Tobias, G.; Canadell, E.; et al. Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Res. 2014, 7, 1556–1568. [Google Scholar] [CrossRef]
- Andres-Penares, D.; Cros, A.; Martínez-Pastor, J.P.; Sá Nchez-Royo, J.F. Quantum size confinement in gallium selenide nanosheets: Band gap tunability versus stability limitation. Nanotechnology 2017, 28. [Google Scholar] [CrossRef] [PubMed]
- Mudd, G.W.; Svatek, S.A.; Ren, T.; Patanè, A.; Makarovsky, O.; Eaves, L.; Beton, P.H.; Kovalyuk, Z.D.; Lashkarev, G.V.; Kudrynskyi, Z.R.; et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Adv. Mater. 2013. [Google Scholar] [CrossRef] [PubMed]
- Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678. [Google Scholar] [CrossRef] [PubMed]
- Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052. [Google Scholar] [CrossRef]
- Kim, W.; Li, C.; Chaves, F.A.; Jiménez, D.; Rodriguez, R.D.; Susoma, J.; Fenner, M.A.; Lipsanen, H.; Riikonen, J. Tunable Graphene-GaSe Dual Heterojunction Device. Adv. Mater. 2016, 28, 1845–1852. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Guo, Y.; Han, N.; Jiang, X.; Zhang, J.; Ahuja, R.; Su, Y.; Zhao, J. 2D lateral heterostructures of group-III monochalcogenide: Potential photovoltaic applications. Appl. Phys. Lett. 2018. [Google Scholar] [CrossRef]
- Li, Y.; Sun, H.; Gan, L.; Zhang, J.; Feng, J.; Zhang, D.; Ning, C.Z. Optical Properties and Light-Emission Device Applications of 2-D Layered Semiconductors. Proc. IEEE 2019. [Google Scholar] [CrossRef]
- Pomerantseva, E.; Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2017. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, Y. 2D material as anode for sodium ion batteries: Recent progress and perspectives. Energy Storage Mater. 2019. [Google Scholar] [CrossRef]
- Martínez-Pastor, J.; Segura, A.; Valdés, J.L.; Chevy, A. Electrical and photovoltaic properties of indium-tin-oxide/p-InSe/Au solar cells. J. Appl. Phys. 1987, 62, 1477–1483. [Google Scholar] [CrossRef]
- Sánchez-Royo, J.F.; Segura, A.; Lang, O.; Pettenkofer, C.; Jaegermann, W.; Chevy, A.; Roa, L. Photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy. Thin Solid Film. 1997, 307, S0040–S6090. [Google Scholar] [CrossRef]
- Sánchez-Royo, J.F.; Segura, A.; Lang, O.; Schaar, E.; Pettenkofer, C.; Jaegermann, W.; Roa, R.; Chevy, A. Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy. J. Appl. Phys. 2001, 90. [Google Scholar] [CrossRef][Green Version]
- Tsai, T.H.; Yang, F.S.; Ho, P.H.; Liang, Z.Y.; Lien, C.H.; Ho, C.H.; Lin, Y.F.; Chiu, P.W. High-Mobility InSe Transistors: The Nature of Charge Transport. ACS Appl. Mater. Interfaces 2019. [Google Scholar] [CrossRef] [PubMed]
- Brotons-Gisbert, M.; Proux, R.; Picard, R.; Andres-Penares, D.; Branny, A.; Molina-Sánchez, A.; Sánchez-Royo, J.F.; Gerardot, B.D. Out-of-plane orientation of luminescent excitons in atomically thin indium selenide flakes. Nat. Commun. 2019, 1–10. [Google Scholar] [CrossRef]
- Singh, G.; Choudhary, A.; Haranath, D.; Joshi, A.G.; Singh, N.; Singh, S.; Pasricha, R. ZnO decorated luminescent graphene as a potential gas sensor at room temperature. Carbon N. Y. 2012, 50, 385–394. [Google Scholar] [CrossRef]
- Perkins, F.K.; Friedman, A.L.; Cobas, E.; Campbell, P.M.; Jernigan, G.G.; Jonker, B.T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Donarelli, M.; Ottaviano, L. 2d materials for gas sensing applications: A review on graphene oxide, MoS2, WS2 and phosphorene. Sensors (Switzerland) 2018. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Du, D.; Lin, Y. Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review. 2d Mater. 2015, 2. [Google Scholar] [CrossRef]
- Zhou, M.; Zhai, Y.; Dong, S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 81, 5603–5613. [Google Scholar] [CrossRef]
- Casanova-Cháfer, J.; García-Aboal, R.; Atienzar, P.; Llobet, E. Gas sensing properties of perovskite decorated graphene at room temperature. Sensors 2019, 19, 4563. [Google Scholar] [CrossRef]
- Abargues, R.; Rodriguez-Canto, P.J.; Albert, S.; Suarez, I.; Martínez-Pastor, J.P. Plasmonic optical sensors printed from Ag-PVA nanoinks. J. Mater. Chem. C 2014, 2, 908–915. [Google Scholar] [CrossRef]
- Rodríguez-Cantó, P.J.; Abargues, R.; Gordillo, H.; Suárez, I.; Chirvony, V.; Albert, S.; Martínez-Pastor, J. UV-patternable nanocomposite containing CdSe and PbS quantum dots as miniaturized luminescent chemo-sensors. RSC Adv. 2015, 5, 19874–19883. [Google Scholar] [CrossRef]
- Gradess, R.; Abargues, R.; Habbou, A.; Canet-Ferrer, J.; Pedrueza, E.; Russell, A.; Valdés, J.L.; Martínez-Pastor, J.P. Localized surface plasmon resonance sensor based on Ag-PVA nanocomposite thin films. J. Mater. Chem. 2009, 19, 9233–9240. [Google Scholar] [CrossRef]
- Taylor, W.F.; Wallace, T.J. Kinetics of deposit formation from hydrocarbons: Effect of Trace Sulfur Compounds. Ind. Eng. Chem. Prod. Res. Dev. 1968, 7, 198–202. [Google Scholar] [CrossRef]
- Haines, W.E.; Cook, G.L.; Ball, J.S. Gaseous Decomposition Products Formed by the Action of Light on Organic Sulfur Compounds. J. Am. Chem. Soc. 1956, 78, 5213–5215. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, J.; Walter, E.; Pan, H.; Lv, D.; Zuo, P.; Chen, H.; Deng, Z.D.; Liaw, B.Y.; Yu, X.; et al. Direct observation of sulfur radicals as reaction media in Lithium sulfur batteries. J. Electrochem. Soc. 2015, 162, A474–A478. [Google Scholar] [CrossRef]
- Miller, J.B.; Barrall, G.A. Explosives detection with nuclear quadrupole resonance: An emerging technology will help to uncover land mines and terrorist bombs. Am. Sci. 2005, 93, 50–57. [Google Scholar] [CrossRef]
- Cardetta, V.L.; Mancini, A.M.; Rizzo, A. Melt growth of single crystal ingots of GaSe by Bridgman-Stockbarger’s method. J. Cryst. Growth 1972, 16, 183–185. [Google Scholar] [CrossRef]
- Brotons-Gisbert, M.; Sánchez-Royo, J.F.; Martínez-Pastor, J.P. Thickness identification of atomically thin InSe nanoflakes on SiO2/Si substrates by optical contrast analysis. Appl. Surf. Sci. 2015, 354, 453–458. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Agrat, N.; Rubio-Bollinger, G. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 2010, 96, 2010–2012. [Google Scholar] [CrossRef]
- Kojima, N.; Sugiura, Y.; Tanaka, H. Polynuclear and Mononuclear Complex Formation between Indium(III) and Sulfhydryl-containing Bidentate Ligands. Chem. Pharm. Bull. 1978. [Google Scholar] [CrossRef][Green Version]
- Arakaki, L.N.H.; Airoldi, C. Ethylenimine in the synthetic routes of a new silylating agent: Chelating ability of nitrogen and sulfur donor atoms after anchoring onto the surface of silica gel. Polyhedron 2000. [Google Scholar] [CrossRef]
- Del Pozo-Zamudio, O.; Schwarz, S.; Klein, J.; Schofield, R.C.; Chekhovich, E.A.; Ceylan, O.; Margapoti, E.; Dmitriev, A.I.; Lashkarev, G.V.; Borisenko, D.N.; et al. Photoluminescence and Raman investigation of stability of InSe and GaSe thin films. arXiv 2015, arXiv:1506.05619. [Google Scholar]
- Politano, A.; Chiarello, G.; Samnakay, R.; Liu, G.; Gürbulak, B.; Duman, S.; Balandin, A.A.; Boukhvalov, D.W. The influence of chemical reactivity of surface defects on ambient-stable InSe-based nanodevices. Nanoscale 2016, 8, 8474–8479. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.J.; Carvalho, A.; Castro Neto, A.H. Defects and oxidation resilience in InSe. Phys. Rev. B 2017, 96, 1–8. [Google Scholar] [CrossRef]
- Balitskii, O.A.; Lutsiv, R.V.; Savchyn, V.P.; Stakhira, J.M. Thermal oxidation of cleft surface of InSe single crystal. Mater. Sci. Eng. B 1998, 56 B56, 5–10. [Google Scholar] [CrossRef]
- Schmidt, R.; Niehues, I.; Schneider, R.; Drüppel, M.; Deilmann, T.; Rohlfing, M.; De Vasconcellos, S.M.; Castellanos-Gomez, A.; Bratschitsch, R. Reversible uniaxial strain tuning in atomically thin WSe2. 2d Mater. 2016, 3, 2–9. [Google Scholar] [CrossRef]
- Kumar, S.; Kaczmarczyk, A.; Gerardot, B.D. Strain-Induced Spatial and Spectral Isolation of Quantum Emitters in Mono- and Bilayer WSe2. Nano Lett. 2015, 15, 7567–7573. [Google Scholar] [CrossRef]
- Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948. [Google Scholar] [CrossRef]
- Brotons-Gisbert, M.; Martínez-Pastor, J.P.; Ballesteros, G.C.; Gerardot, B.D.; Sánchez-Royo, J.F. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes. Nanophotonics 2018, 7, 253–267. [Google Scholar] [CrossRef]
Analyte | [Analyte]liq M | [Analyte]vap M | [Analyte]vap ppb |
---|---|---|---|
Water | - | - | - |
2-mercaptoethanol 1 | 0.1 | 1.4 · 10−7 | 10.9 |
2-mercaptoethanol 1 | 16.8 | 8 · 10−5 | 5714 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andres-Penares, D.; Canet-Albiach, R.; Noguera-Gomez, J.; Martínez-Pastor, J.P.; Abargues, R.; Sánchez-Royo, J.F. Two-Dimensional Indium Selenide for Sulphur Vapour Sensing Applications. Nanomaterials 2020, 10, 1396. https://doi.org/10.3390/nano10071396
Andres-Penares D, Canet-Albiach R, Noguera-Gomez J, Martínez-Pastor JP, Abargues R, Sánchez-Royo JF. Two-Dimensional Indium Selenide for Sulphur Vapour Sensing Applications. Nanomaterials. 2020; 10(7):1396. https://doi.org/10.3390/nano10071396
Chicago/Turabian StyleAndres-Penares, Daniel, Rodolfo Canet-Albiach, Jaume Noguera-Gomez, Juan P. Martínez-Pastor, Rafael Abargues, and Juan F. Sánchez-Royo. 2020. "Two-Dimensional Indium Selenide for Sulphur Vapour Sensing Applications" Nanomaterials 10, no. 7: 1396. https://doi.org/10.3390/nano10071396
APA StyleAndres-Penares, D., Canet-Albiach, R., Noguera-Gomez, J., Martínez-Pastor, J. P., Abargues, R., & Sánchez-Royo, J. F. (2020). Two-Dimensional Indium Selenide for Sulphur Vapour Sensing Applications. Nanomaterials, 10(7), 1396. https://doi.org/10.3390/nano10071396