RF Thermal Plasma Synthesis of Ultrafine ZrB2-ZrC Composite Powders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Characterization
3. Results and Discussion
3.1. Thermodynamic Calculation
3.2. Numerical Simulation
3.3. Experimental Results
4. Conclusions
- (1)
- ZrB2 was preferentially generated rather than ZrC, and free C instead of B would exist in the resulting products when C and B exceed the stoichiometric ratio.
- (2)
- Solid raw materials could disperse well in the gaseous reactants, which leads to the uniform distribution of elements in ZrB2-ZrC composite powders.
- (3)
- Free carbon particles can be removed during post-treatment, and ZrB2-ZrC composite powders with a particle size of about 100 nm could be obtained.
- (4)
- The surface area of ZrB2-ZrC composite powders was 32.15 m2/g and the apparent density was 0.57 g/cm3.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hassan, R.; Balani, K. Oxidation kinetics of ZrB2-and HfB2-powders and their SiC reinforced composites. Corros. Sci. 2020, 177, 109024. [Google Scholar] [CrossRef]
- Vafa, N.P.; Kakroudi, M.G.; Asl, M.S. Advantages and disadvantages of graphite addition on the characteristics of hot-pressed ZrB2–SiC composites. Ceram. Int. 2020, 46, 8561–8566. [Google Scholar] [CrossRef]
- Ang, C.; Seeber, A.; Wang, K.; Cheng, Y. Modification of ZrB2 powders by a sol–gel ZrC precursor-A new approach for ultra high temperature ceramic composites. J. Asian Ceram. Soc. 2013, 1, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Ke, C.; Zhang, J. Synthesis of ZrB2 powders by molten-salt participating silicothermic reduction. J. Alloys Compd. 2020, 834, 155062. [Google Scholar] [CrossRef]
- Torabi, S.; Valefi, Z.; Ehsani, N. Ablation behavior of SiC/ZrB2 ultra-high temperature ceramic coatings by solid shielding shrouded plasma spray for high-temperature applications (temperature above 2000 °C). Surf. Coat. Technol. 2020, 403, 126271. [Google Scholar] [CrossRef]
- Bai, L.; Ni, S.; Jin, H.; He, J.; Ouyang, Y.; Yuan, F. ZrB2 powders with low oxygen content: Synthesis and characterization. Int. J. Appl. Ceram. Technol. 2017, 15, 508–513. [Google Scholar] [CrossRef]
- Shaa, J.J.; Wang, S.H.; Dai, J.X.; Zu, Y.F.; Li, W.Q.; Sha, R.Y. Improved microstructure and high temperature mechanical properties of C/C–SiC composites by introduction of ZrC nanoparticles. Ceram. Int. 2020, 46, 8082–8091. [Google Scholar] [CrossRef]
- Wu, X.; Su, Z.; Huang, Q.; Tong, K.; Xie, X.; Zeng, C. Effect of ZrC particle distribution on the ablation resistance of C/C-SiC-ZrC composites fabricated using precursor infiltration pyrolysis. Ceram. Int. 2020, 46, 16062–16067. [Google Scholar] [CrossRef]
- Ma, B.; Li, J. ZrB2-SiC-ZrC coating on ZrC ceramics deposited by plasma spraying. Results Phys. 2019, 15, 102550. [Google Scholar] [CrossRef]
- Rezapour, A.; Balak, Z. Fracture toughness and hardness investigation in ZrB2–SiC–ZrC composite. Mater. Chem. Phys. 2020, 241, 122284. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Yuan, X.; Liu, H.; Li, C.; Hou, X. Preparation of ZrB2-ZrC-SiC-ZrO2 nanopowders with in-situ grown homogeneously dispersed SiC nanowires. Mater. Des. 2020, 196, 109186. [Google Scholar] [CrossRef]
- Wang, W.; Fu, Q.; Tan, B. Effect of in-situ grown SiC nanowires on the mechanical properties of HfC-ZrB2-SiC modified C/C composites. J. Alloys Compd. 2017, 726, 866e874. [Google Scholar] [CrossRef]
- Asl, M.S.; Nayebi, B.; Parvizi, S.; Ahmadi, Z.; Parvin, N.; Shokouhimehr, M.; Mohammadi, M. Toughening of ZrB2-based composites with in-situ synthesized ZrC from ZrO2 and graphite precursors. J. Sci. Adv. Mater. Devices 2020. [Google Scholar] [CrossRef]
- King, D.S.; Hilmas, G.E.; Fahrenholtz, W.G. Plasma arcwelding of ZrB2–20 vol% ZrC ceramics. J. Eur. Ceram. Soc. 2014, 34, 3549–3557. [Google Scholar]
- Xu, L.; Huang, H.; Liu, B.; Zou, H.; Zhao, G. In situ synthesis of ZrB2–ZrCx ceramic tool materials toughened by elongated ZrB2 grains. Mater. Des. 2013, 49, 226–233. [Google Scholar] [CrossRef]
- Kannan, R.; Rangaraj, L. Properties of Cf/SiC-ZrB2-TaxCy composite produced by reactive hot pressing and polymer impregnation pyrolysis (RHP/PIP). J. Eur. Ceram. Soc. 2019, 39, 2257–2265. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, S.; Li, W.; Zhu, Y.; Chen, Z. Mechanical properties of the low-temperature reactive melt infiltrated ZrB2–ZrC based composites. Mater. Lett. 2012, 78, 81–84. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, F.; Li, W.; Liu, J.; Gu, Y.; Zhang, F. Densification behavior and mechanical properties of spark plasma reaction sintered ZrB2–ZrC-B4C ceramics from B4C-Zr system. Ceram. Int. 2019, 45, 12122–12129. [Google Scholar] [CrossRef]
- Sorrell, C.; Beratan, H.; Bradt, R.; Stubican, V. Directional Solidification of (Ti, Zr) Carbide-(Ti, Zr) Diboride Eutectics. J. Am. Ceram. Soc. 2006, 67, 190–194. [Google Scholar] [CrossRef]
- Tsuchida, T. MA-SHS and SPS of ZrB2–ZrC composites. Solid State Ionics 2004, 172, 215–216. [Google Scholar] [CrossRef]
- Khanra, A.; Godkhindi, M.; Pathak, L. Sintering behaviour of ultra-fine titanium diboride powder prepared by self-propagating high-temperature synthesis (SHS) technique. Mater. Sci. Eng. A 2007, 454, 281–287. [Google Scholar] [CrossRef]
- Çamurlu, H.E.; Maglia, F. Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis. J. Eur. Ceram. Soc. 2009, 29, 1501–1506. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, R.; Jiang, Y.; Zhao, B.; Duan, H.; Li, J.; Feng, Z. Morphology evolution of ZrB2 nanoparticles synthesized by sol–gel method. J. Solid State Chem. 2011, 184, 2047–2052. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, R.; Xie, L.; Qu, J.; Liu, Y.; Li, X. Inorganic Nanostructures: Plasma-Assisted Approaches in Inorganic Nanostructure Fabrication (Adv. Mater. 13/2010). Adv. Mater. 2010, 22, 1451–1473. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Bai, L.; Jin, H.; Jia, Z.; Hou, G.; Yuan, F. Simulation and experimental observation of silicon particles’ vaporization in RF thermal plasma reactor for preparing Si nano-powder. Powder Technol. 2017, 313, 27–35. [Google Scholar] [CrossRef]
- Son, B.-K.; Lee, K.-H.; Kim, T.H.; Shin, M.-S.; Choi, S.-Y.; Cho, G. Purification and Nitrogen Doping of Nanothin Exfoliated Graphite Through RF Thermal Plasma Treatment. Nanomaterials 2019, 9, 995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, J.H.; Kim, D.U.; Nam, J.S.; Hong, S.H.; Sohn, S.B.; Song, S.M. Radio Frequency Thermal Plasma Treatment for Size Reduction and Spheroidization of Glass Powders Used in Ceramic Electronic Devices. J. Am. Ceram. Soc. 2007, 90, 1717–1722. [Google Scholar] [CrossRef]
- Li, Y.-L.; Ishigaki, T. Spheroidization of Titanium Carbide Powders by Induction Thermal Plasma Processing. J. Am. Ceram. Soc. 2004, 84, 1929–1936. [Google Scholar] [CrossRef]
- Hou, G.; Cheng, B.; Ding, F.; Yao, M.; Mingshui, Y.; Yuan, F. Synthesis of Uniform α-Si3N4 Nanospheres by RF Induction Thermal Plasma and Their Application in High Thermal Conductive Nanocomposites. ACS Appl. Mater. Interfaces 2015, 7, 2873–2881. [Google Scholar] [CrossRef]
- Kim, K.S.; Couillard, M.; Shin, H.; Plunkett, M.; Ruth, D.; Kingston, C.T.; Simard, B. Role of Hydrogen in High-Yield Growth of Boron Nitride Nanotubes at Atmospheric Pressure by Induction Thermal Plasma. ACS Nano 2018, 12, 884–893. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Kim, J.H.; Jasinski, J.B.; Clark, E.L.; Sunkara, M.K. Alkali-Assisted, Atmospheric Plasma Production of Titania Nanowire Powders and Arrays. Cryst. Growth Des. 2011, 11, 2913–2919. [Google Scholar] [CrossRef]
- Westover, A.S.; Kercher, A.K.; Kornbluth, M.; Naguib, M.; Palmer, M.J.; Cullen, D.A.; Dudney, N.J. Plasma Synthesis of Spherical Crystalline and Amorphous Electrolyte Nanopowders for Solid-State Batteries. ACS Appl. Mater. Interfaces 2020, 12, 11570–11578. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Jin, H.; Lu, C.; Yuan, F.; Huang, S.; Li, J. RF thermal plasma-assisted metallothermic synthesis of ultrafine ZrB2 powders. Ceram. Int. 2015, 41, 7312–7317. [Google Scholar] [CrossRef]
- Bai, L.; Zhang, H.; Jin, H.; Yuan, F.; Huang, S.; Li, J. Radio-Frequency Atmospheric-Pressure Plasma Synthesis of Ultrafine ZrC Powders. Int. J. Appl. Ceram. Technol. 2012, 10, E274–E281. [Google Scholar] [CrossRef]
- Knacke, O.; Kubaschewski, O.; Hesselmann, K. Thermochemical Properties of Inorganic Substances, 2nd ed; Springer: Berlin, Germany, 1991. [Google Scholar]
- Bai, L.; He, J.; Ouyang, Y.; Liu, W.; Liu, H.; Yao, H.; Li, Z.; Song, J.; Wang, Y.; Yuan, F.-L. Modeling and Selection of RF Thermal Plasma Hot-Wall Torch for Large-Scale Production of Nanopowders. Materials 2019, 12, 2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Numbers | Parameters | Values |
---|---|---|
1 | Power supply | 30 kW |
2 | Plasma gas (Ar) | 2.0 m3/h |
3 | Sheath gas (Ar) | 5.0 m3/h |
4 | Carrier gas (Ar/CH4) | 0.2 m3/h |
5 | Feed rate (CH4) | 0–0.6 L/min |
6 | Feed rate (H2) | 0–0.3 L/min |
7 | Feed rate (solid) | 4.0–16.0 g/min |
CH4/ZrCl4 | Carbon Content | Oxygen Content |
---|---|---|
0 | 0 | 6.06% |
0.05 | 0.25% | 3.91% |
0.10 | 0.32% | 3.45% |
C/B/Zr | Carbon Content | Oxygen Content |
---|---|---|
1:2:2 | 5.29% | 3.5% |
0.3:2:1 | 0.32% | 3.45% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Yuan, F.; Fang, Z.; Wang, Q.; Ouyang, Y.; Jin, H.; He, J.; Liu, W.; Wang, Y. RF Thermal Plasma Synthesis of Ultrafine ZrB2-ZrC Composite Powders. Nanomaterials 2020, 10, 2497. https://doi.org/10.3390/nano10122497
Bai L, Yuan F, Fang Z, Wang Q, Ouyang Y, Jin H, He J, Liu W, Wang Y. RF Thermal Plasma Synthesis of Ultrafine ZrB2-ZrC Composite Powders. Nanomaterials. 2020; 10(12):2497. https://doi.org/10.3390/nano10122497
Chicago/Turabian StyleBai, Liuyang, Fangli Yuan, Zheng Fang, Qi Wang, Yuge Ouyang, Huacheng Jin, Jiaping He, Wenfu Liu, and Yinling Wang. 2020. "RF Thermal Plasma Synthesis of Ultrafine ZrB2-ZrC Composite Powders" Nanomaterials 10, no. 12: 2497. https://doi.org/10.3390/nano10122497
APA StyleBai, L., Yuan, F., Fang, Z., Wang, Q., Ouyang, Y., Jin, H., He, J., Liu, W., & Wang, Y. (2020). RF Thermal Plasma Synthesis of Ultrafine ZrB2-ZrC Composite Powders. Nanomaterials, 10(12), 2497. https://doi.org/10.3390/nano10122497