Investigating the Structure of Intelligence Using Latent Variable and Psychometric Network Modeling: A Commentary and Reanalysis
Abstract
:1. Introduction
Commentary Reanalysis
2. Materials and Methods
2.1. Participants and Measures
2.2. Statistical Procedure and Analysis
2.2.1. Confirmatory Factor Analyses
2.2.2. Psychometric Network Analyses
2.2.3. Approach to Model Fit
3. Results
4. Discussion
5. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Browne, Michael. W., and Robert Cudeck. 1993. Alternative ways of assessing model fit. In Testing Structural Equation Models. Edited by Kenneth A. Bollen and J. Scott Long. Newbury Park: Sage, pp. 136–62. [Google Scholar]
- Carroll, John B. 1993. Human Cognitive Abilities: A Survey of Factor-Analytic Studies. New York: Cambridge University Press. [Google Scholar] [CrossRef]
- Cattell, Raymond B. 1943. The measurement of adult intelligence. Psychological Bulletin 40: 153–93. [Google Scholar] [CrossRef]
- Conway, Andrew R. A., Kristof Kovacs, Han Hao, Sare Anne Goring, and Christopher J. Schmank. 2021. The Struggle is Real: Challenges and Solutions in Theory Building. Psychological Inquiry 31: 302–9. [Google Scholar] [CrossRef]
- Epskamp, Sacha, Angelique O. J. Cramer, Lourens J. Waldorp, Verena D. Schmittmann, and Denny Borsboom. 2012. Qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software 48. [Google Scholar] [CrossRef] [Green Version]
- Epskamp, Sacha, Gaby Lunansky, Pia Tio, and Denny Borsboom. 2018. Recent Developments on the Performance of Graphical LASSO Networks. April. Available online: http://psychosystems.org/author/sachaepskamp/ (accessed on 24 May 2018).
- Golino, Hudson F., and Sacha Epskamp. 2017. Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PLoS ONE 12: e0174035. [Google Scholar] [CrossRef] [Green Version]
- Goring, Sare Anne, Christopher J. Schmank, Michael J. Kane, and Andrew R. A. Conway. 2019. Psychometric Models of Individual Differences in Reading Comprehension: A Reanalysis of Freed, Hamilton, and Long (2017). Journal of Memory and Language. in press. [Google Scholar] [CrossRef]
- Horn, John L., and Raymond B. Cattell. 1966. Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology 57: 253–70. [Google Scholar] [CrossRef] [PubMed]
- Kan, Kees-Jan, Hannelies de Jonge, Han L. J. van der Maas, Stephen Z. Levine, and Sacha Epskamp. 2020. How to compare psychometric factor and network models. Journal of Intelligence 8: 35. [Google Scholar] [CrossRef]
- Kan, Kees-Jan, Han L. J. van der Maas, and Stephen Z. Levine. 2019. Extending psychometric network analysis: Empirical evidence against g in favor of mutualism? Intelligence 73: 52–62. [Google Scholar] [CrossRef]
- Kovacs, Kristof, and Andrew R. A. Conway. 2016. Process Overlap Theory: A unified account of the general factor of intelligence. Psychological Inquiry 27: 151–77. [Google Scholar] [CrossRef]
- McFarland, Dennis. 2020. The effects of using partial or uncorrected correlation matrices when comparing network and latent variable models. Journal of Intelligence 8: 7. [Google Scholar] [CrossRef] [Green Version]
- Neale, Michael C., Michael D. Hunter, Joshua N. Pritikin, Mahsa Zahery, Timothy R. Brick, Robert M. Kirkpatrick, Ryne Estabrook, Timothy C. Bates, Hermine H. Maes, and Steven M. Boker. 2016. OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika 81: 535–49. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. 2013. R: A Language and Environment for Statistical Computing. Vienna and Austria: R Foundation for Statistical Computing, Available online: http://www.R-project.org/ (accessed on 13 August 2015).
- Rosseel, Yves. 2012. Lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software 48: 1–36. Available online: http://www.jstatsoft:v48/i02/ (accessed on 10 August 2017). [CrossRef] [Green Version]
- Schermelleh-Engel, Karin, Helfried Moosbrugger, and Hans Müller. 2003. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online 8: 23–74. [Google Scholar]
- Schmank, Christopher J., Sara Anne Goring, Kristof Kovacs, and Andrew R. A. Conway. 2019. Psychometric network analysis of the Hungarian WAIS. Journal of Intelligence 7: 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, James B., Frances K. Stage, Jamie King, Amaury Nora, and Elizabeth A. Barlow. 2006. Reporting structural equation modeling and confirmatory factor analysis results: A review. Journal of Educational Research 99: 323–38. [Google Scholar] [CrossRef]
- Van Der Maas, Han L. J., Conor V. Dolan, Raoul P. Grasman, Jelte M. Wicherts, Hilde M. Huizenga, and Maartje E. Raijmakers. 2006. A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review 113: 842–61. [Google Scholar] [CrossRef] [PubMed]
- Van Der Maas, Han L. J., Kees-Jan Kan, Maarten Marsman, and Claire E. Stevenson. 2017. Network models for cognitive development and intelligence. Journal of Intelligence 5: 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Oertzen, Timo, Andreas M. Brandmaier, and Siny Tsang. 2015. Structural equation modeling with Ωnyx. Structural Equation Modeling: A Multidisciplinary Journal 22: 148–61. [Google Scholar] [CrossRef]
- Wechsler, David. 2008. Wechsler Adult Intelligence Scale, 4th ed. WAIS-IV. San Antonio: NCS Pearson. [Google Scholar]
1. | The present paper and Schmank et al. (2019) employ RMSEA cutoff values representing the strictest value deemed acceptable by Schreiber et al. (2006); it should be noted that values less than 0.08 can also indicate adequate model fit (Browne and Cudeck 1993; Schermelleh-Engel et al. 2003). |
BD | S | DS | MR | V | A | SS | VP | I | Cd | LN | FW | C | Ca | PC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BD | 1.00 | ||||||||||||||
S | 0.43 | 1.00 | |||||||||||||
DS | 0.39 | 0.34 | 1.00 | ||||||||||||
MR | 0.52 | 0.37 | 0.42 | 1.00 | |||||||||||
V | 0.46 | 0.67 | 0.40 | 0.44 | 1.00 | ||||||||||
A | 0.47 | 0.41 | 0.60 | 0.48 | 0.51 | 1.00 | |||||||||
SS | 0.36 | 0.30 | 0.27 | 0.31 | 0.29 | 0.33 | 1.00 | ||||||||
VP | 0.66 | 0.42 | 0.34 | 0.51 | 0.47 | 0.47 | 0.32 | 1.00 | |||||||
I | 0.47 | 0.58 | 0.36 | 0.44 | 0.66 | 0.49 | 0.34 | 0.48 | 1.00 | ||||||
Cd | 0.32 | 0.29 | 0.34 | 0.35 | 0.28 | 0.43 | 0.57 | 0.30 | 0.29 | 1.00 | |||||
LN | 0.42 | 0.34 | 0.67 | 0.35 | 0.39 | 0.52 | 0.27 | 0.35 | 0.40 | 0.22 | 1.00 | ||||
FW | 0.54 | 0.48 | 0.46 | 0.51 | 0.51 | 0.58 | 0.29 | 0.55 | 0.49 | 0.32 | 0.42 | 1.00 | |||
C | 0.46 | 0.67 | 0.38 | 0.44 | 0.70 | 0.47 | 0.26 | 0.46 | 0.60 | 0.32 | 0.38 | 0.49 | 1.00 | ||
Ca | 0.38 | 0.24 | 0.44 | 0.30 | 0.30 | 0.41 | 0.42 | 0.37 | 0.34 | 0.39 | 0.33 | 0.31 | 0.24 | 1.00 | |
PC | 0.47 | 0.44 | 0.37 | 0.39 | 0.38 | 0.36 | 0.29 | 0.47 | 0.42 | 0.24 | 0.35 | 0.40 | 0.46 | 0.31 | 1.00 |
BD | S | DS | MR | V | A | SS | VP | I | Cd | LN | FW | C | Ca | PC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BD | 1.00 | ||||||||||||||
S | 0.47 | 1.00 | |||||||||||||
DS | 0.44 | 0.49 | 1.00 | ||||||||||||
MR | 0.54 | 0.52 | 0.49 | 1.00 | |||||||||||
V | 0.44 | 0.74 | 0.52 | 0.49 | 1.00 | ||||||||||
A | 0.51 | 0.55 | 0.61 | 0.52 | 0.59 | 1.00 | |||||||||
SS | 0.39 | 0.33 | 0.41 | 0.36 | 0.35 | 0.38 | 1.00 | ||||||||
VP | 0.67 | 0.48 | 0.43 | 0.54 | 0.43 | 0.49 | 0.35 | 1.00 | |||||||
I | 0.43 | 0.65 | 0.42 | 0.48 | 0.74 | 0.56 | 0.30 | 0.43 | 1.00 | ||||||
Cd | 0.35 | 0.35 | 0.43 | 0.42 | 0.38 | 0.43 | 0.64 | 0.33 | 0.29 | 1.00 | |||||
LN | 0.43 | 0.46 | 0.71 | 0.46 | 0.50 | 0.59 | 0.36 | 0.43 | 0.44 | 0.37 | 1.00 | ||||
FW | 0.56 | 0.54 | 0.52 | 0.58 | 0.53 | 0.61 | 0.33 | 0.59 | 0.51 | 0.34 | 0.52 | 1.00 | |||
C | 0.44 | 0.72 | 0.48 | 0.51 | 0.76 | 0.54 | 0.31 | 0.46 | 0.65 | 0.36 | 0.49 | 0.54 | 1.00 | ||
Ca | 0.32 | 0.19 | 0.32 | 0.25 | 0.20 | 0.28 | 0.46 | 0.31 | 0.18 | 0.42 | 0.28 | 0.26 | 0.17 | 1.00 | |
PC | 0.49 | 0.36 | 0.36 | 0.39 | 0.34 | 0.31 | 0.39 | 0.47 | 0.33 | 0.31 | 0.35 | 0.39 | 0.33 | 0.33 | 1.00 |
BD | S | DS | MR | V | A | SS | VP | I | Cd | LN | FW | C | Ca | PC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BD | 1.00 | ||||||||||||||
S | 0.52 | 1.00 | |||||||||||||
DS | 0.44 | 0.52 | 1.00 | ||||||||||||
MR | 0.57 | 0.50 | 0.52 | 1.00 | |||||||||||
V | 0.49 | 0.75 | 0.55 | 0.54 | 1.00 | ||||||||||
A | 0.54 | 0.63 | 0.58 | 0.55 | 0.64 | 1.00 | |||||||||
SS | 0.48 | 0.38 | 0.44 | 0.47 | 0.35 | 0.39 | 1.00 | ||||||||
VP | 0.64 | 0.43 | 0.38 | 0.51 | 0.46 | 0.52 | 0.45 | 1.00 | |||||||
I | 0.48 | 0.65 | 0.47 | 0.46 | 0.75 | 0.61 | 0.35 | 0.48 | 1.00 | ||||||
Cd | 0.44 | 0.47 | 0.48 | 0.51 | 0.43 | 0.46 | 0.65 | 0.39 | 0.36 | 1.00 | |||||
LN | 0.40 | 0.51 | 0.65 | 0.51 | 0.51 | 0.53 | 0.48 | 0.43 | 0.44 | 0.54 | 1.00 | ||||
FW | 0.58 | 0.57 | 0.51 | 0.60 | 0.58 | 0.64 | 0.43 | 0.59 | 0.53 | 0.46 | 0.47 | 1.00 | |||
C | 0.46 | 0.72 | 0.51 | 0.50 | 0.74 | 0.60 | 0.32 | 0.45 | 0.65 | 0.45 | 0.52 | 0.56 | 1.00 | ||
Ca | 0.37 | 0.36 | 0.31 | 0.26 | 0.29 | 0.32 | 0.48 | 0.32 | 0.23 | 0.46 | 0.37 | 0.36 | 0.32 | 1.00 | |
PC | 0.55 | 0.49 | 0.41 | 0.45 | 0.49 | 0.45 | 0.44 | 0.54 | 0.51 | 0.42 | 0.43 | 0.49 | 0.51 | 0.36 | 1.00 |
Models | χ2 | df | CFI/TLI | RMSEA | AIC | BIC | |
---|---|---|---|---|---|---|---|
lavaan/qgraph | Correlated Factors | 226.66 *** | 84 | 0.95/0.94 | 0.07 | 298.66 | 328.12 |
Higher-Order | 232.22 *** | 86 | 0.95/0.94 | 0.07 | 300.22 | 328.05 | |
Network | 44.50 | 32 | 1.00/0.99 | 0.03 | 220.50 | 292.52 | |
openMx | Correlated Factors | 226.64 *** | 84 | 0.95/0.94 | 0.07 | 298.64 | 328.10 |
Network | 44.48 | 32 | 1.00/0.99 | 0.03 | 220.48 | 292.50 |
Models | χ2 | df | CFI/TLI | RMSEA | AIC | BIC | |
---|---|---|---|---|---|---|---|
lavaan/qgraph | Correlated Factors | 469.08 *** | 84 | 0.96/0.94 | 0.07 | 541.08 | 603.42 |
Higher-Order | 484.45 *** | 86 | 0.95/0.94 | 0.07 | 552.45 | 580.27 | |
Network | 50.50 * | 32 | 1.00/0.99 | 0.02 | 226.50 | 378.89 | |
openMx | Correlated Factors | 469.08 *** | 84 | 0.96/0.94 | 0.07 | 541.08 | 603.42 |
Network | 50.49 * | 32 | 1.00/0.99 | 0.02 | 226.49 | 378.88 |
Models | χ2 | df | CFI/TLI | RMSEA | AIC | BIC | |
---|---|---|---|---|---|---|---|
lavaan/qgraph | Correlated Factors | 245.63 *** | 84 | 0.96/0.94 | 0.07 | 317.63 | 347.09 |
Higher-Order | 266.64 *** | 86 | 0.95/0.94 | 0.07 | 334.64 | 362.47 | |
Network | 27.28 | 30 | 1.00/1.00 | <0.001 | 207.28 | 275.30 | |
openMx | Correlated Factors | 245.61 *** | 84 | 0.96/0.94 | 0.07 | 317.61 | 347.07 |
Network | 27.26 | 30 | 1.00/1.00 | <0.001 | 207.26 | 280.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmank, C.J.; Goring, S.A.; Kovacs, K.; Conway, A.R.A. Investigating the Structure of Intelligence Using Latent Variable and Psychometric Network Modeling: A Commentary and Reanalysis. J. Intell. 2021, 9, 8. https://doi.org/10.3390/jintelligence9010008
Schmank CJ, Goring SA, Kovacs K, Conway ARA. Investigating the Structure of Intelligence Using Latent Variable and Psychometric Network Modeling: A Commentary and Reanalysis. Journal of Intelligence. 2021; 9(1):8. https://doi.org/10.3390/jintelligence9010008
Chicago/Turabian StyleSchmank, Christopher J., Sara Anne Goring, Kristof Kovacs, and Andrew R. A. Conway. 2021. "Investigating the Structure of Intelligence Using Latent Variable and Psychometric Network Modeling: A Commentary and Reanalysis" Journal of Intelligence 9, no. 1: 8. https://doi.org/10.3390/jintelligence9010008
APA StyleSchmank, C. J., Goring, S. A., Kovacs, K., & Conway, A. R. A. (2021). Investigating the Structure of Intelligence Using Latent Variable and Psychometric Network Modeling: A Commentary and Reanalysis. Journal of Intelligence, 9(1), 8. https://doi.org/10.3390/jintelligence9010008