Mathematical Creativity in Adults: Its Measurement and Its Relation to Intelligence, Mathematical Competence and General Creativity
Abstract
:1. Introduction
1.1. Definition and Measurement of Mathematical Creativity
1.2. Intelligence and (Mathematical) Creativity
1.3. Mathematical Competence and Mathematical Creativity
1.4. General Creativity and Mathematical Creativity
1.5. The Present Study
2. Materials and Methods
2.1. Participants
2.2. Materials
2.2.1. Mathematical Creativity Measure for Adults (MathCrea)
2.2.2. Intelligence
2.2.3. Mathematical Competence
2.2.4. Domain-General Creativity
2.3. Procedure
2.4. Analyses
3. Results
3.1. Psychometrics and Structure of the MathCrea
3.2. Relationship of Mathematical Creativity with Other Constructs
3.3. Exploratory Analyses of Quantitative and Qualitative Aspects of Mathematical Creativity
4. Discussion
4.1. Evaluation of the MathCrea
4.2. The Association between the MathCrea and Intelligence, Mathematical Competence, and General Creativity
4.3. Quantitative and Qualitative Aspects of Mathemematical Creativity
4.4. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Category | Example Answers |
---|---|
Numerical Generate | |
4 different components (symbols + numbers) within an equation | 2 + 3 + 3 = 8 2 × 8/2 = 8 |
8 different components (symbols + numbers) within an equation | (((8 + 3) × 2 − 8)/2 − 3)/2 = 2 (3 + 2) × 8/(8 − 3) = 8 |
Numerical Similarities | |
Above/below X | Below 50 Above 10 |
Divisible by X | Completely divisible by 4 Not completely divisible by 3 |
Figural Generate | |
Triangles | |
Combination of different shapes | |
Figural Similarities | |
Three dimensional | are three dimensional objects: A, B, C, E, F, G, H hold volume: A, B, C, E, F, G, H; |
Surface area | No round surfaces: A, B, C, E, G No surface parallel areas: B, D, G |
Correlation Matrix | Figural Similarities | Numerical Similarities | Figural Generate | Numerical Generate |
---|---|---|---|---|
Figural Similarities | 1 | 0.40 | 0.32 | 0.20 |
Numerical Similarities | 1 | 0.15 | 0.01 | |
Figural Generate | 1 | 0.25 | ||
Numerical Generate | 1 |
Correlation Matrix | Figural Similarities | Numerical Similarities | Figural Generate |
---|---|---|---|
Figural Similarities | 1 | 0.43 | 0.35 |
Numerical Similarities | 1 | 0.19 | |
Figural Generate | 1 |
Figural Similarities | Numerical Similarities | Figural Generate | Numerical Generate | |
---|---|---|---|---|
M | 4.77 | 7.31 | 9.99 | 4.97 |
SD | 2.32 | 3.57 | 5.89 | 2.71 |
Min; max | 1.03; 12.50 | 2.10; 21.70 | 1.00; 30.80 | 1.03; 15.13 |
Skewness | 0.83 | 1.19 | 0.62 | 0.91 |
SE | 0.25 | 0.24 | 0.25 | 0.25 |
Kurtosis | 1.08 | 1.79 | 0.51 | 1.32 |
SE | 0.50 | 0.48 | 0.49 | 0.50 |
Mathematical Creativity | General Intelligence | Verbal Intelligence | Numerical Intelligence | Figural Intelligence | Math Competence | General Creativity | |
---|---|---|---|---|---|---|---|
M | −0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
SD | 0.73 | 1.00 | 1.00 | 1.00 | 1.000 | 1.00 | 0.66 |
Skewness | 0.46 | 0.10 | −0.50 | 0.19 | 0.31 | 0.07 | 0.28 |
SE | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 |
Kurtosis | −0.13 | −0.52 | 0.33 | 0.32 | 0.64 | −0.45 | −0.12 |
SE | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 |
K-S test p | 0.057 | 0.200 | 0.200 | 0.200 | 0.200 | 0.137 | 0.200 |
Mathematical Creativity | General Intelligence | Verbal Intelligence | Numerical Intelligence | Figural Intelligence | Math Competence | General Creativity | |
---|---|---|---|---|---|---|---|
M | 7.33 | 185.45 | 47.83 | 53.67 | 83.95 | 18.52 | 6.93 |
SD | 2.98 | 27.34 | 9.66 | 14.90 | 12.44 | 6.37 | 2.16 |
Min; max | 1.57; 17.32 | 124; 246 | 17; 66 | 21; 97 | 55; 126 | 3; 31 | 2.33; 13.33 |
Skewness | 0.68 | 0.04 | −0.61 | 0.34 | 0.26 | 0.07 | 0.22 |
SE | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 |
Kurtosis | 0.58 | −0.43 | 0.69 | 0.15 | 0.57 | −0.45 | −0.20 |
SE | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 |
K-S test p | 0.090 | 0.200 | 0.200 | 0.140 | 0.200 | 0.137 | 0.200 |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 NG-U | 1 | |||||||||||||||||||||
2 NG-X | 0.723 | 1 | ||||||||||||||||||||
3 NG-O | 0.881 | 0.711 | 1 | |||||||||||||||||||
4 NG-Oa | −0.137 | −0.029 | 0.256 | 1 | ||||||||||||||||||
5 NS-U | −0.054 | 0.016 | 0.009 | 0.179 | 1 | |||||||||||||||||
6 NS-X | −0.019 | 0.130 | 0.038 | 0.139 | 0.866 | 1 | ||||||||||||||||
7 NS-O | −0.013 | 0.015 | 0.052 | 0.202 | 0.944 | 0.788 | 1 | |||||||||||||||
8 NS-Oa | 0.146 | 0.056 | 0.166 | 0.093 | 0.378 | 0.281 | 0.634 | 1 | ||||||||||||||
9 FG-U | 0.134 | 0.163 | 0.212 | 0.110 | 0.213 | 0.338 | 0.227 | 0.148 | 1 | |||||||||||||
10 FG-X | 0.077 | 0.028 | 0.190 | 0.163 | 0.121 | 0.244 | 0.132 | 0.094 | 0.770 | 1 | ||||||||||||
11 FG-O | 0.198 | 0.266 | 0.326 | 0.197 | 0.216 | 0.356 | 0.260 | 0.209 | 0.906 | 0.738 | 1 | |||||||||||
12 FG-Oa | 0.192 | 0.263 | 0.340 | 0.291 | 0.063 | 0.181 | 0.112 | 0.161 | 0.467 | 0.563 | 0.727 | 1 | ||||||||||
13 FS-U | 0.154 | 0.146 | 0.216 | 0.119 | 0.437 | 0.383 | 0.469 | 0.362 | 0.350 | 0.282 | 0.351 | 0.151 | 1 | |||||||||
14 FS-X | 0.169 | 0.156 | 0.226 | 0.099 | 0.442 | 0.392 | 0.468 | 0.347 | 0.307 | 0.259 | 0.318 | 0.121 | 0.975 | 1 | ||||||||
15 FS-O | 0.094 | 0.108 | 0.225 | 0.230 | 0.408 | 0.378 | 0.454 | 0.367 | 0.362 | 0.316 | 0.408 | 0.278 | 0.892 | 0.861 | 1 | |||||||
16 FS-Oa | −0.057 | 0.018 | 0.126 | 0.293 | 0.117 | 0.127 | 0.160 | 0.173 | 0.194 | 0.246 | 0.320 | 0.452 | 0.190 | 0.167 | 0.565 | 1 | ||||||
17 gIQ | 0.263 | 0.240 | 0.331 | 0.076 | 0.289 | 0.347 | 0.306 | 0.240 | 0.345 | 0.362 | 0.379 | 0.338 | 0.331 | 0.327 | 0.357 | 0.199 | 1 | |||||
18 vIQ | 0.107 | 0.080 | 0.175 | 0.133 | 0.160 | 0.250 | 0.136 | 0.087 | 0.320 | 0.342 | 0.294 | 0.237 | 0.264 | 0.281 | 0.287 | 0.159 | 0.728 | 1 | ||||
19 nIQ | 0.266 | 0.215 | 0.285 | 0.013 | 0.351 | 0.353 | 0.384 | 0.277 | 0.286 | 0.254 | 0.301 | 0.228 | 0.196 | 0.190 | 0.214 | 0.121 | 0.773 | 0.369 | 1 | |||
20 fIQ | 0.175 | 0.208 | 0.248 | 0.046 | 0.092 | 0.146 | 0.106 | 0.129 | 0.166 | 0.227 | 0.245 | 0.286 | 0.287 | 0.273 | 0.306 | 0.166 | 0.706 | 0.381 | 0.215 | 1 | ||
21 m. Comp. | 0.208 | 0.218 | 0.262 | 0.044 | 0.177 | 0.242 | 0.199 | 0.146 | 0.145 | 0.184 | 0.282 | 0.353 | 0.083 | 0.081 | 0.064 | 0.014 | 0.448 | 0.266 | 0.401 | 0.299 | 1 | |
22 gC | 0.075 | 0.144 | 0.057 | 0.050 | 0.355 | 0.296 | 0.293 | 0.022 | 0.283 | 0.186 | 0.194 | 0.042 | 0.375 | 0.346 | 0.362 | 0.192 | 0.129 | 0.325 | −0.004 | 0.037 | −0.043 | 1 |
References
- Assmus, Daniela, and Torsten Fritzlar. 2018. Mathematical Giftedness and Creativity in Primary Grades. Mathematical Creativity and Mathematical Giftedness, 55–81. [Google Scholar] [CrossRef]
- Baer, John, and James C. Kaufman. 2005. Bridging Generality and Specificity: The Amusement Park Theoretical (APT) Model of Creativity. Roeper Review 27: 158–63. [Google Scholar] [CrossRef]
- Baer, John. 1993. Divergent Thinking and Creativity: A Task-Specific Approach. Hillsdale: Lawrence Erlbaum Associates. [Google Scholar]
- Baer, John. 2010. Is Creativity Domain Specific? In The Cambridge Handbook of Creativity. Edited by James C. Kaufman and Robert J. Sternberg. Cambridge: Cambridge University Press, pp. 321–41. [Google Scholar] [CrossRef]
- Baer, John. 2015. The Importance of Domain-Specific Expertise in Creativity. Roeper Review 37: 165–78. [Google Scholar] [CrossRef]
- Bahar, Kadir A., and June C. Maker. 2011. Exploring the Relationship between Mathematical Creativity and Mathematical Achievement. Asia-Pacific Journal of Gifted and Talented Education 3: 33–48. [Google Scholar]
- Beaty, Roger E., and Paul J. Silvia. 2013. Metaphorically Speaking: Cognitive Abilities and the Production of Figurative Language. Memory & Cognition 41: 255–67. [Google Scholar] [CrossRef]
- Becker, Jerry P., and Shigeru Shimada. 1997. The Open-Ended Approach: A New Proposal for Teaching Mathematics. Reston: National Council of Teachers of Mathematics. [Google Scholar]
- Benedek, Mathias, Caterina Mühlmann, Emanuel Jauk, and Aljoscha C. Neubauer. 2013. Assessment of Divergent Thinking by Means of the Subjective Top-Scoring Method: Effects of the Number of Top-Ideas and Time-on-Task on Reliability and Validity. Psychology of Aesthetics, Creativity, and the Arts 7: 341–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedek, Mathias, Emanuel Jauk, Markus Sommer, Martin Arendasy, and Aljoscha C. Neubauer. 2014. Intelligence, Creativity, and Cognitive Control: The Common and Differential Involvement of Executive Functions in Intelligence and Creativity. Intelligence 46: 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedek, Mathias, Nora Nordtvedt, Emanuel Jauk, Corinna Koschmieder, Jürgen Pretsch, Georg Krammer, and Aljoscha C Neubauer. 2016. Assessment of Creativity Evaluation Skills: A Psychometric Investigation in Prospective Teachers. Thinking Skills and Creativity 21: 75–84. [Google Scholar] [CrossRef]
- Benedek, Mathias, Yoed N. Kenett, Konstantin Umdasch, David Anaki, Miriam Faust, and Aljoscha C. Neubauer. 2017. How Semantic Memory Structure and Intelligence Contribute to Creative Thought: A Network Science Approach. Thinking & Reasoning 23: 158–83. [Google Scholar] [CrossRef]
- Chand, Ivonne, and Mark A. Runco. 1993. Problem Finding Skills as Components in the Creative Process. Personality and Individual Differences 14: 155–62. [Google Scholar] [CrossRef]
- Chauhan, Chandra Pal Singh. 1984. Nature of Mathematical Ability. Delhi: Vishwavidyalaya Prakashan. [Google Scholar]
- Chen, Chuansheng, Amy Himsel, Joseph Kasof, Elllen Greenberger, and Julia Dmitrieva. 2006. Boundless Creativity: Evidence for the Domain Generality of Individual Differences in Creativity. The Journal of Creative Behavior 40: 179–99. [Google Scholar] [CrossRef] [Green Version]
- Cho, Sun Hee, Jan Te Nijenhuis, Annelies E. M. Van Vianen, Heui-Baik Kim, and Kun Ho Lee. 2010. The Relationship Between Diverse Components of Intelligence and Creativity. The Journal of Creative Behavior 44: 125–37. [Google Scholar] [CrossRef]
- Costello, Anna B., and Jason W. Osborne. 2005. Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most from Your Analysis. Practical Assessment, Research and Evaluation 10: 7. [Google Scholar]
- Cropley, Arthur J. 2000. Defining and Measuring Creativity: Are Creativity Tests Worth Using? Roeper Review 23: 72–79. [Google Scholar] [CrossRef]
- Cropley, Arthur. 2006. In Praise of Convergent Thinking. Creativity Research Journal 18: 391–404. [Google Scholar] [CrossRef]
- Csikszentmihalyi, Mihaly. 1996. Creativity: Flow and the Psychology of Discovery and Invention. New York: Harper Collins. [Google Scholar]
- Deary, Ian J., Steve Strand, Pauline Smith, and Cres Fernandes. 2007. Intelligence and Educational Achievement. Intelligence 35: 13–21. [Google Scholar] [CrossRef]
- Dijk, H. Van, and Peter Johannes Tellegen. 2004. Handleiding NIO [Manual of the NIO]. Amsterdam: Boom Test Uitgevers. [Google Scholar]
- Dow, Gayle T., and Richard E. Mayer. 2004. Teaching Students to Solve Insight Problems: Evidence for Domain Specificity in Creativity Training. Creativity Research Journal 16: 389–402. [Google Scholar] [CrossRef]
- Forthmann, Boris, Carsten Szardenings, and Heinz Holling. 2020. Understanding the Confounding Effect of Fluency in Divergent Thinking Scores: Revisiting Average Scores to Quantify Artifactual Correlation. Psychology of Aesthetics, Creativity, and the Arts 14: 94–112. [Google Scholar] [CrossRef]
- Forthmann, Boris, David Jendryczko, Jana Scharfen, Ruben Kleinkorres, Mathias Benedek, and Heinz Holling. 2019. Creative Ideation, Broad Retrieval Ability, and Processing Speed: A Confirmatory Study of Nested Cognitive Abilities. Intelligence 75: 59–72. [Google Scholar] [CrossRef]
- Haavold, Per Øystein. 2016. An Empirical Investigation of a Theoretical Model for Mathematical Creativity. Journal of Creative Behavior 52: 226–39. [Google Scholar] [CrossRef]
- Hannon, Brenda. 2016. General and Non-General Intelligence Factors Simultaneously Influence SAT, SAT-V, and SAT-M Performance. Intelligence 59: 51–63. [Google Scholar] [CrossRef]
- Haylock, Derek W. 1987. Mathematical Creativity in Schoolchildren. The Journal of Creative Behavior 21: 48–59. [Google Scholar] [CrossRef]
- Haylock, Derek. 1997. Recognising Mathematical Creativity in Schoolchildren. ZDM—Mathematics Education 29: 68–74. [Google Scholar] [CrossRef]
- Hocevar, Dennis. 1979. Ideational Fluency as a Confounding Factor in the Measurement of Originality. Journal of Educational Psychology 71: 191–96. [Google Scholar] [CrossRef]
- Huang, Po Sheng, Shu Ling Peng, Hsueh Chih Chen, Li Cheng Tseng, and Li Ching Hsu. 2017. The Relative Influences of Domain Knowledge and Domain-General Divergent Thinking on Scientific Creativity and Mathematical Creativity. Thinking Skills and Creativity 25: 1–9. [Google Scholar] [CrossRef]
- Jäger, Adolf Otto, Heinz-Martin Süß, and André Beauducel. 1997. Berliner Intelligenzstruktur-Test [Berlin Intelligence Structure Test]. Göttingen: Hoegrefe. [Google Scholar]
- Jasper, Fabian, and Dietrich Wagener. 2013. Mathematiktest Für Die Personalauswahl: M-PA. Göttingen: Hogrefe. Available online: https://madoc.bib.uni-mannheim.de/34304/ (accessed on 9 April 2019).
- Jeon, Kyung Nam, Sidney M. Moon, and Brian French. 2011. Differential Effects of Divergent Thinking, Domain Knowledge, and Interest on Creative Performance in Art and Math. Creativity Research Journal 23: 60–71. [Google Scholar] [CrossRef]
- Kahveci, Nihat Gurel, and Savaş Akgul. 2019. The Relationship between Mathematical Creativity and Intelligence: A Study on Gifted and General Education Students. Gifted and Talented International 34: 59–70. [Google Scholar] [CrossRef]
- Karwowski, Maciej, Dorota M. Jankowska, Arkadiusz Brzeski, Marta Czerwonka, Aleksandra Gajda, Izabela Lebuda, and Ronald A. Beghetto. 2020. Delving into Creativity and Learning. Creativity Research Journal 32: 4–16. [Google Scholar] [CrossRef]
- Karwowski, Maciej, Jan Dul, Jacek Gralewski, Emanuel Jauk, Dorota M. Jankowska, Aleksandra Gajda, Michael H. Chruszczewski, and Mathias Benedek. 2016. Is Creativity without Intelligence Possible? A Necessary Condition Analysis. Intelligence 57: 105–17. [Google Scholar] [CrossRef]
- Kattou, Maria, and Constantinos Christou. 2017. Does Intelligence Affect All Students’ Mathematical Creativity? Paper presented at the 10th International MCG Cnference, Nicosia, Cyprus, April 24–26; pp. 136–2017. [Google Scholar]
- Kattou, Maria, Constantinos Christou, and Demetra Pitta-Pantazi. 2015. Mathematical Creativity or General Creativity? Paper presented at the Ninth Congress of the European Society for Research in Mathematics Education, Prague, Czech Republic, February 4–8; pp. 1016–23. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jocb.361 (accessed on 19 July 2020).
- Kattou, Maria, Katerina Kontoyianni, Demetra Pitta-Pantazi, and Constantinos Christou. 2013. Connecting Mathematical Creativity to Mathematical Ability. ZDM—International Journal on Mathematics Education 45: 167–81. [Google Scholar] [CrossRef]
- Kaufman, James C., and Jonathan A. Plucker. 2018. Intelligence and Creativity. In The Cambridge Handbook of Intelligence. Edited by Robert J. Sternberg and Scott Barry Kaufman. Cambridge: Cambridge University Press, pp. 771–83. [Google Scholar] [CrossRef]
- Kellner, Raphaela, and Mathias Benedek. 2017. The Role of Creative Potential and Intelligence for Humor Production. Psychology of Aesthetics, Creativity, and the Arts 11: 52–58. [Google Scholar] [CrossRef]
- Kim, Kyung Hee. 2005. Can Only Intelligent People Be Creative? Journal of Secondary Gifted Education XVI: 57–66. Available online: http://kkim.wmwikis.net/file/view/Can_Only_Intelligent_People_Creative.pdf (accessed on 24 July 2020).
- Koo, Terry K., and Mae Y. Li. 2016. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine 15: 155–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroesbergen, Evelyn H., and Eveline M. Schoevers. 2017. Creativity as Predictor of Mathematical Abilities in Fourth Graders in Addition to Number Sense and Working Memory. Journal of Numerical Cognition 3: 417–40. [Google Scholar] [CrossRef] [Green Version]
- Leikin, Roza, and Demetra Pitta-Pantazi. 2013. Creativity and Mathematics Education: The State of the Art. ZDM—International Journal on Mathematics Education 45: 159–66. [Google Scholar] [CrossRef]
- Leikin, Roza, and Miriam Lev. 2013. Mathematical Creativity in Generally Gifted and Mathematically Excelling Adolescents: What Makes the Difference? ZDM—International Journal on Mathematics Education 45: 183–97. [Google Scholar] [CrossRef]
- Leikin, Roza, Mark Leikin, Nurit Paz-Baruch, Ilana Waisman, and Miri Lev. 2017. On the Four Types of Characteristics of Super Mathematically Gifted Students. High Ability Studies 28: 107–25. [Google Scholar] [CrossRef]
- Leikin, Roza. 2007. Habits of Mind Associated with Advanced Mathematical Thinking and Solution Space of Mathematical Tesks. Paper presented at the Fifth Conference of the European Society for Research in Mathematics Education, Larnaca, Cyprus, February 22–26; vol. 5, pp. 2330–39. [Google Scholar]
- Leikin, Roza. 2009. Exploring Mathematical Creativity Using Multiple Solution Tasks. In Creativity in Mathematics and the Education of Gifted Students. Leiden: Brill|Sense, pp. 129–45. [Google Scholar] [CrossRef]
- Leikin, Roza. 2013. Evaluating Mathematical Creativity: The Interplay between Multiplicity and Insight. Psychological Test and Assessment Modeling 55: 385–400. Available online: http://www.psychologie-aktuell.com/fileadmin/download/ptam/4-2013_20131217/04_Leikin.pdf (accessed on 9 April 2018).
- Lin, Chia Yi, and Seokhee Cho. 2011. Predicting Creative Problem-Solving in Math from a Dynamic System Model of Creative Problem Solving Ability. Creativity Research Journal 23: 255–61. [Google Scholar] [CrossRef]
- Livne, Nava L., and Roberta M. Milgram. 2006. Academic Versus Creative Abilities in Mathematics: Two Components of the Same Construct? Creativity Research Journal 18: 199–212. [Google Scholar] [CrossRef]
- Mann, Eric. 2005. Mathematical Creativity and School Mathematics: Indicators of Mathematical Creativity in Middle School Students. Berlin: Springer. [Google Scholar]
- Naglieri, Jack A. 1997. Naglieri Nonverbal Ability Test Technical Manual. San Antonio: The Psychological Corporation. [Google Scholar]
- Pitta-Pantazi, Demetra, Maria Kattou, and Constantinos Christou. 2018. Mathematical Creativity: Product, Person, Process and Press. In Mathematical Creativity and Mathematical Giftedness. Edited by Florence Mihaela Singer. Berlin: Springer, pp. 27–53. [Google Scholar]
- Plucker, Jonathan A. Avitia, Amber Esping, James C. Kaufman, and Maria J. Avitia. 2015. Creativity and Intelligence. In Handbook of Intelligence. New York: Springer, pp. 283–91. [Google Scholar]
- Plucker, Jonathan, and Dasha Zabelina. 2009. Creativity and Interdisciplinarity: One Creativity or Many Creativities? ZDM—International Journal on Mathematics Education 41: 5–11. [Google Scholar] [CrossRef]
- Prouse, Howard L. 1964. The Construction and Use of a Test for the Measurement of Certain Aspects of Creativity in Seventh-Grade Mathematics. Iowa City: State University of Iowa. [Google Scholar]
- Raven, John C. 1998. Manual Section 3 Standard Progressive Matrices. Oxford: Oxford Psychologists Press Ltd. [Google Scholar]
- Reiter-Palmon, Roni, Boris Forthmann, and Baptiste Barbot. 2019. Scoring Divergent Thinking Tests: A Review and Systematic Framework. Psychology of Aesthetics, Creativity, and the Arts 13: 144–52. [Google Scholar] [CrossRef]
- Roth, Bettina, Nicolas Becker, Sara Romeyke, Sarah Schäfer, Florian Domnick, and Frank M. Spinath. 2015. Intelligence and School Grades: A Meta-Analysis. Intelligence 53: 118–37. [Google Scholar] [CrossRef]
- Sak, Ugur, and C. June Maker. 2006. Developmental Variation in Children’s Creative Mathematical Thinking as a Function of Schooling, Age, and Knowledge Ugur. Creativity Research Journal 18: 279–91. [Google Scholar] [CrossRef]
- Sak, Ugur, Ülkü Ayvaz, Bilge Bal-Sezerel, and N. Nazlı Özdemir. 2017. Creativity in the Domain of Mathematics. In The Cambridge Handbook of Creativity Across Domains. Edited by James C. Kaufman, Vlad P. Glaveanu and John Baer. Cambridge: Cambridge University Press, pp. 276–98. [Google Scholar] [CrossRef]
- Schoevers, Eveline M., Evelyn H. Kroesbergen, and Maria Kattou. 2018. Mathematical Creativity: A Combination of Domain-General Creative and Domain-Specific Mathematical Skills. Journal of Creative Behavior 54: 242–52. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, James B., Frances K. Stage, Jamie King, Amaury Nora, and Elizabeth A Barlow. 2006. Reporting Structural Equation Modeling and Confirmatory Factor Analysis Results: A Review. Journal of Educational Research 99: 323–38. [Google Scholar] [CrossRef]
- Silvia, Paul J., Beate P. Winterstein, John T. Willse, Christopher M. Barona, Joshua T. Cram, Karl I. Hess, Jenna L. Martinez, and Crystal A. Richard. 2008. Assessing Creativity with Divergent Thinking Tasks: Exploring the Reliability and Validity of New Subjective Scoring Methods. Psychology of Aesthetics, Creativity, and the Arts 2: 68–85. [Google Scholar] [CrossRef]
- Silvia, Paul J., Roger E. Beaty, and Emily C. Nusbaum. 2013. Verbal Fluency and Creativity: General and Specific Contributions of Broad Retrieval Ability (Gr) Factors to Divergent Thinking. Intelligence 41: 328–40. [Google Scholar] [CrossRef]
- Silvia, Paul J. 2015. Intelligence and Creativity Are Pretty Similar After All. Educational Psychology Review 27: 599–606. [Google Scholar] [CrossRef]
- Simonton, Dean Keith. 2014. Creative Performance, Expertise Acquisition, Individual Differences, and Developmental Antecedents: An Integrative Research Agenda. Intelligence 45: 66–73. [Google Scholar] [CrossRef]
- Singh, Bharat. 1987. The Development of Tests to Measure Mathematical Creativity. International Journal of Mathematical Education in Science and Technology 18: 181–86. [Google Scholar] [CrossRef]
- Sriraman, Bharath. 2005. Are Giftedness and Creativity Synonyms in Mathematics. The Journal of Secondary Gifted Education XVII: 20–36. [Google Scholar]
- Sternberg, Robert J., and Todd I. Lubart. 1991. An Investment Theory of Creativity and Its Development. Human Development 34: 1–31. [Google Scholar] [CrossRef]
- Sternberg, Robert J., and Todd I. Lubart. 1999. The Concept of Creativity: Prospects and Paradigms. In Handbook of Creativity. Cambridge: Cambridge University Press, pp. 3–15. [Google Scholar] [CrossRef]
- Stolte, Marije, Evelyn H. Kroesbergen, and Johannes E. H. Van Luit. 2018. Inhibition, Friend or Foe? Cognitive Inhibition as a Moderator between Mathematical Ability and Mathematical Creativity in Primary School Students. Personality and Individual Differences 142: 196–201. [Google Scholar] [CrossRef]
- Stolte, Marije, Trinidad García, Johannes E. H. Van Luit, Bob Oranje, and Evelyn H. Kroesbergen. 2020. The Contribution of Executive Functions in Predicting Mathematical Creativity in Typical Elementary School Classes: A Twofold Role for Updating. Journal of Intelligence 8: 26. [Google Scholar] [CrossRef] [PubMed]
- Torrance, E. Paul, and H. Tammy Safter. 1999. Making The Creative Leap Beyond. Buffalo: Creative Education Foundation Press, p. 87. [Google Scholar]
- Torrance, E. Paul. 1966. Torrance Tests of Creative Thinking: Directions Manual and Scoring Guide. Bensenville: Scholastic Testing Serviece. [Google Scholar]
- Tubb, Adeline L., David H. Cropley, Rebecca L. Marrone, Tim Patston, and James C. Kaufman. 2020. The Development of Mathematical Creativity across High School: Increasing, Decreasing, or Both? Thinking Skills and Creativity 35. [Google Scholar] [CrossRef]
- Tyagi, Tarun Kumar. 2017. Mathematical Intelligence and Mathematical Creativity: A Causal Relationship. Creativity Research Journal 29: 212–17. [Google Scholar] [CrossRef]
- Walia, Pooja, and Puneet Walia. 2017. Developement and Standardisation of Mathematical Creativity Test. International Journal of Advanced Research 5: 1293–300. [Google Scholar] [CrossRef] [Green Version]
- Zainudin, M., Bambang Subali, and Jailani Jailani. 2019. Construct Validity of Mathematical Creativity Instrument: First-Order and Second-Order Confirmatory Factor Analysis. International Journal of Instruction 12: 595–614. [Google Scholar] [CrossRef]
Mathematical Creativity | General Intelligence | Verbal Intelligence | Numerical Intelligence | Figural Intelligence | Math Competence | General Creativity | |
---|---|---|---|---|---|---|---|
Mathematical Creativity | 1 | ||||||
General intelligence | 0.43 ** | 1 | |||||
Verbal intelligence | 0.36 ** | 0.73 ** | 1 | ||||
Numerical intelligence | 0.35 ** | 0.75 ** | 0.40 ** | 1 | |||
Figural intelligence | 0.27 * | 0.75 ** | 0.35 ** | 0.26 * | 1 | ||
Math competence | 0.24 * | 0.47 ** | 0.32 ** | 0.43 ** | 0.30 ** | 1 | |
General creativity | 0.42 ** | 0.07 | 0.27 * | −0.06 | 0.01 | −0.04 | 1 |
Predictor | β | t | p | |
---|---|---|---|---|
Mathematical creativity | Verbal intelligence | 0.06 | 0.56 | 0.577 |
Numerical intelligence | 0.28 | 2.84 | 0.006 | |
Figural intelligence | 0.16 | 1.75 | 0.083 | |
Math competence | 0.07 | 0.72 | 0.475 | |
General creativity | 0.42 | 4.79 | <0.001 |
General Intelligence | Verbal Intelligence | Numerical Intelligence | Figural Intelligence | Math Competence | General Creativity | |
---|---|---|---|---|---|---|
Quantitative mathematical creativity | 0.42 ** | 0.37 ** | 0.33 ** | 0.26 * | 0.22 * | 0.43 ** |
Qualitative mathematical creativity | 0.30 ** | 0.27 ** | 0.18 | 0.23 * | 0.19 | 0.19 |
Predictor | β | t | p | |
---|---|---|---|---|
Quantitative mathematical creativity | Verbal intelligence | 0.08 | 0.83 | 0.411 |
Numerical intelligence | 0.26 | 2.59 | 0.011 | |
Figural intelligence | 0.15 | 1.60 | 0.113 | |
Math competence | 0.06 | 0.64 | 0.523 | |
General creativity | 0.42 | 4.78 | <0.001 | |
Qualitative mathematical creativity | Verbal intelligence | 0.12 | 1.02 | 0.309 |
Numerical intelligence | 0.07 | 0.59 | 0.559 | |
Figural intelligence | 0.14 | 1.34 | 0.182 | |
Math competence | 0.09 | 0.77 | 0.442 | |
General creativity | 0.16 | 1.59 | 0.116 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meier, M.A.; Burgstaller, J.A.; Benedek, M.; Vogel, S.E.; Grabner, R.H. Mathematical Creativity in Adults: Its Measurement and Its Relation to Intelligence, Mathematical Competence and General Creativity. J. Intell. 2021, 9, 10. https://doi.org/10.3390/jintelligence9010010
Meier MA, Burgstaller JA, Benedek M, Vogel SE, Grabner RH. Mathematical Creativity in Adults: Its Measurement and Its Relation to Intelligence, Mathematical Competence and General Creativity. Journal of Intelligence. 2021; 9(1):10. https://doi.org/10.3390/jintelligence9010010
Chicago/Turabian StyleMeier, Michaela A., Julia A. Burgstaller, Mathias Benedek, Stephan E. Vogel, and Roland H. Grabner. 2021. "Mathematical Creativity in Adults: Its Measurement and Its Relation to Intelligence, Mathematical Competence and General Creativity" Journal of Intelligence 9, no. 1: 10. https://doi.org/10.3390/jintelligence9010010
APA StyleMeier, M. A., Burgstaller, J. A., Benedek, M., Vogel, S. E., & Grabner, R. H. (2021). Mathematical Creativity in Adults: Its Measurement and Its Relation to Intelligence, Mathematical Competence and General Creativity. Journal of Intelligence, 9(1), 10. https://doi.org/10.3390/jintelligence9010010