The Mitochondrial Theory of g Is Incompatible with Genetic Evidence and Does Not Explain Statistical Phenomena
Author Contributions
Funding
Conflicts of Interest
References
- Allegrini, Andrea G., Saskia Selzam, Kaili Rimfeld, Sophie von Stumm, Jean-Baptiste Pingault, and Robert Plomin. 2019. Genomic prediction of cognitive traits in childhood and adolescence. Molecular Psychiatry 24: 819–27. [Google Scholar] [CrossRef]
- Borsboom, Denny, Gideon J. Mellenbergh, and Jaap Van Heerden. 2003. The theoretical status of latent variables. Psychological Review 110: 203–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvin, Catherine M., Ian J. Deary, Candida Fenton, Beverly A. Roberts, Geoff Der, Nicola Leckenby, and G. David Batty. 2011. Intelligence in youth and all-cause-mortality: Systematic review with meta-analysis. International Journal of Epidemiology 40: 626–44. [Google Scholar] [CrossRef] [PubMed]
- Coleman, Jonathan R. I., Julien Bryois, Héléna A. Gaspar, Philip R. Jansen, Jeanne E. Savage, Nathan Skene, Robert Plomin, Ana B. Muñoz-Manchado, Sten Linnarsson, Greg Crawford, and et al. 2019. Biological annotation of genetic loci associated with intelligence in a meta-analysis of 87,740 individuals. Molecular Psychiatry 24: 182–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, Gail, Max Lam, Sarah E. Harris, Joey W. Trampush, Michelle Luciano, W. David Hill, Saskia P. Hagenaars, Stuart J. Ritchie, Riccardo E. Marioni, Chloe Fawns-Ritchie, and et al. 2018. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications 9: 2098. [Google Scholar] [CrossRef] [Green Version]
- Deary, Ian J., Sarah E. Harris, and W. David Hill. 2019. What genome-wide association studies reveal about the association between intelligence and physical health, illness, and mortality. Current Opinion in Psychology 27: 6–12. [Google Scholar] [CrossRef]
- Geary, David C. 2018. Efficiency of mitochondrial functioning as the fundamental biological mechanism of general intelligence (g). Psychological Review 125: 1028–50. [Google Scholar] [CrossRef]
- Geary, David C. 2019. Mitochondria as the Linchpin of General Intelligence and the Link between g, Health, and Aging. Journal of Intelligence 7: 25. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, Jan-Eric. 1984. A unifying model for the structure of intellectual abilities. Intelligence 8: 179–203. [Google Scholar] [CrossRef]
- Hill, W. David, Ruben C. Arslan, Charley Xia, Michelle Luciano, Carmen Amador, Pau Navarro, Caroline Hayward, R. Nagy, D. J. Porteous, Andrew M. McIntosh, and et al. 2018. Genomic analysis of family data reveals additional genetic effects on intelligence and personality. Molecular Psychiatry 23: 2347–62. [Google Scholar] [CrossRef] [Green Version]
- Kan, Kees-Jan, Rogier A. Kievit, Conor Dolan, and Han van der Maas. 2011. On the interpretation of the CHC factor Gc. Intelligence 39: 292–302. [Google Scholar] [CrossRef]
- Kievit, Rogier A., Simon W. Davis, John Griffiths, Marta M. Correia, and Richard N. Henson. 2016. A watershed model of individual differences in fluid intelligence. Neuropsychologia 91: 186–98. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, Kristof, and Andrew R. A. Conway. 2016. Process Overlap Theory: A Unified Account of the General Factor of Intelligence. Psychological Inquiry 27: 151–77. [Google Scholar] [CrossRef]
- Krijnen, Wim P. 2004. Positive loadings and factor correlations from positive covariance matrices. Psychometrika 69: 655–60. [Google Scholar] [CrossRef]
- Lam, Max, Joey W. Trampush, Jin Yu, Emma Knowles, Gail Davies, David C. Liewald, John M. Starr, Srdjan Djurovic, Ingrid Melle, Kjetil Sundet, and et al. 2017. Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets. Cell Reports 21: 2597–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, James J., Robbee Wedow, Aysu Okbay, Edward Kong, Omeed Maghzian, Meghan Zacher, Tuan Anh Nguyen-Viet, Peter Bowers, Julia Sidorenko, Richard Karlsson Linnér, and et al. 2018. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics 50: 1112–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackintosh, Nicholas J. 2011. IQ and Human Intelligence. Oxford: Oxford University Press. [Google Scholar]
- Okbay, Aysu, Jonathan P. Beauchamp, Mark Alan Fontana, James J. Lee, Tune H. Pers, Cornelius A. Rietveld, Patrick Turley, Guo-Bo Chen, Valur Emilsson, S. Fleur W. Meddens, and et al. 2016. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533: 539–42. [Google Scholar] [CrossRef] [Green Version]
- Panizzon, Matthew S., Eero Vuoksimaa, Kelly M. Spoon, Kristen C. Jacobson, Michael J. Lyons, Carol E. Franz, Hong Xian, Terrie Vasilopoulos, and William S. Kremen. 2014. Genetic and Environmental Influences of General Cognitive Ability: Is g a valid latent construct? Intelligence 43: 65–76. [Google Scholar] [CrossRef] [Green Version]
- Plomin, Robert, and Ian J. Deary. 2015. Genetics and intelligence differences: Five special findings. Molecular Psychiatry 20: 98–108. [Google Scholar] [CrossRef] [Green Version]
- Polderman, Tinca J. C., Beben Benyamin, Christiaan A. De Leeuw, Patrick F. Sullivan, Arjen Van Bochoven, Peter M. Visscher, and Danielle Posthuma. 2015. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics 47: 702–9. [Google Scholar] [CrossRef] [Green Version]
- Rietveld, Cornelius A., Sarah E. Medland, Jaime Derringer, Jian Yang, Tõnu Esko, Nicolas W. Martin, Harm-Jan Westra, Konstantin Shakhbazov, Abdel Abdellaoui, Arpana Agrawam, and et al. 2013. GWAS of 126,559 Individuals Identifies Genetic Variants Associated with Educational Attainment. Science (New York, NY) 340: 1467–71. [Google Scholar] [CrossRef] [Green Version]
- Savage, Jeanne E., Philip R. Jansen, Sven Stringer, Kyoko Watanabe, Julien Bryois, Christiaan A. de Leeuw, Mats Nagel, Swapnil Awasthi, Peter B Barr, Jonathan R. I. Coleman, and et al. 2017. GWAS meta-analysis (N = 279,930) identifies new genes and functional links to intelligence. bioRxiv. [Google Scholar] [CrossRef]
- Savage, Jeanne E., Philip R. Jansen, Sven Stringer, Kyoko Watanabe, Julien Bryois, Christiaan A. De Leeuw, Mats Nagel, Swapnil Awasthi, Peter B. Barr, Jonathan R. I. Coleman, and et al. 2018. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature Genetics 50: 912–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savi, Alexander O., Maarten Marsman, Han L. J. van der Maas, and Gunter K. J. Maris. 2019. The Wiring of Intelligence. Perspectives on Psychological Science 14: 1034–61. [Google Scholar] [CrossRef] [PubMed]
- Selzam, Saskia, Stuart J. Ritchie, Jean-Baptiste Pingault, Chandra A. Reynolds, Paul F. O’Reilly, and Robert Plomin. 2019. Comparing Within- and Between-Family Polygenic Score Prediction. The American Journal of Human Genetics 105: 351–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shikishima, Chizuru, Kai Hiraishi, Shinji Yamagata, Yutaro Sugimoto, Ryo Takemura, Koken Ozaki, Mitsuhiro Okada, Tatsushi Toda, and Juko Ando. 2009. Is g an entity? A Japanese twin study using syllogisms and intelligence tests. Intelligence 37: 256–67. [Google Scholar] [CrossRef]
- Sniekers, Suzanne, Sven Stringer, Kyoko Watanabe, Philip R. Jansen, Jonathan R. I. Coleman, Eva Krapohl, Erdogan Taskesen, Anke R. Hammerschlag, Aysu Okbay, Delilah Zabaneh, and et al. 2017. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nature Genetics 49: 1107–12. [Google Scholar] [CrossRef]
- Trampush, Joey W., Max Lam Zhan Yang, Jin Yu, Emma Knowles, Gail Davies, David C. Liewald, John M. Starr, S. Djurovic, I. Melle, K. Sundet, and et al. 2017. GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: A report from the COGENT consortium. Molecular Psychiatry 22: 336. [Google Scholar] [CrossRef]
- Van Der Maas, Han L. J., Conor V. Dolan, Raoul PPP Grasman, Jelte M. Wicherts, Hilde M. Huizenga, and Maartje E. J. Raijmakers. 2006. A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review 113: 842–61. [Google Scholar] [CrossRef]
- Zabaneh, Delilah, Eva Krapohl, H. A. Gaspar, Charles Curtis, S. Hong Lee, Hamel Patel, Stephen Newhouse, H. M. Wu, M. A. Simpson, M. Putallaz, and et al. 2017. A genome-wide association study for extremely high intelligence. Molecular Psychiatry 23: 1226–32. [Google Scholar] [CrossRef] [Green Version]
Study | Data Source | N | Organ | Region | Cell Type or Function |
---|---|---|---|---|---|
Lam et al. 2017 | Multiple cohorts also used in the Sniekers et al. 2017; Trampush et al. 2017; Okbay et al. 2016 GWASs. | 107,207 | Brain, pituitary | Cerebellar hemisphere, cerebellum, frontal cortex, cortex, anterior cingulate, nucleus accumbens, caudate nucleus, hypothalamus, hippocampus, putamen, amygdala | Neuron, neuron projection, neurogenesis, synapses, dendrites, synapse organization |
Savage et al. 2018 | UK Biobank, COGENT consortium and 12 other sources | 269,867 | Brain | Amygdala, anterior cingulate cortex, caudate nucleus, cerebellar hemisphere, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens, putamen | Medium spiny neuron, pyramidal (somatosensory, hippocampal CA1) |
Davies et al. 2018 | CHARGE and COGENT consortia, UK Biobank | 300,486 | Brain, pituitary | Cerebellum, cerebellar hemisphere, cortex, frontal cortex, hippocampus, nucleus accumbens, hypothalamus, amygdala, caudate nucleus, putamen, substantia nigra, pituitary | Neurogenesis, regulation of nervous system development, neuron projection, nervous system development, neuron differentiation, regulation of cell development, dendrites |
Hill et al. 2018 | Meta-analysis of the Sniekers et al. 2017; Okbay et al. 2016 GWASs, UK Biobank | 248,482 | Brain, pituitary | Cerebellar hemisphere, cerebellum, frontal cortex, cortex, anterior cingulate, nucleus accumbens, hippocampus, amygdala, hypothalamus, caudate nucleus, putamen, substantia nigra | Neurogenesis, nervous system development, cell development, neuron projection, CNS neuron differentiation, synapse, neuron differentiation, oligodendrocyte differentiation |
Coleman et al. 2019 | Meta-analysis of the Zabaneh et al. 2017; Sniekers et al. 2017 GWASs | 87,740 | Brain, pituitary | Frontal cortex | Pyramidal (somatosensory, hippocampal CA1), medium spiny neuron, embryonic GABAergic neuron, serotonergic neuron |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przemyslaw Ujma, P.; Kovacs, K. The Mitochondrial Theory of g Is Incompatible with Genetic Evidence and Does Not Explain Statistical Phenomena. J. Intell. 2020, 8, 27. https://doi.org/10.3390/jintelligence8030027
Przemyslaw Ujma P, Kovacs K. The Mitochondrial Theory of g Is Incompatible with Genetic Evidence and Does Not Explain Statistical Phenomena. Journal of Intelligence. 2020; 8(3):27. https://doi.org/10.3390/jintelligence8030027
Chicago/Turabian StylePrzemyslaw Ujma, Péter, and Kristof Kovacs. 2020. "The Mitochondrial Theory of g Is Incompatible with Genetic Evidence and Does Not Explain Statistical Phenomena" Journal of Intelligence 8, no. 3: 27. https://doi.org/10.3390/jintelligence8030027
APA StylePrzemyslaw Ujma, P., & Kovacs, K. (2020). The Mitochondrial Theory of g Is Incompatible with Genetic Evidence and Does Not Explain Statistical Phenomena. Journal of Intelligence, 8(3), 27. https://doi.org/10.3390/jintelligence8030027