The Enriching Interplay between Openness and Interest: A Theoretical Elaboration of the OFCI Model and a First Empirical Test
Abstract
:1. Introduction
1.1. The OFCI Model
1.2. The OFCI Model and Interests
1.3. An Elaboration of the OFCI Model
1.4. Aims of the Current Pilot Study
2. Methods
2.1. Sample
2.2. Procedure
2.3. Measures
2.4. Statistical Procedure
2.5. Power Considerations
3. Results
3.1. Preliminary Analyses and Variance Decomposition
3.2. Effects on Accumulation of Knowledge
4. Discussion
4.1. (Co-)Variation of Openness and Interests
4.2. The Influence on Gc
4.3. Limitations
5. Conclusions
Author Contributions
Conflicts of Interest
References
- McArdle, J.J.; Grimm, K.J.; Hamagami, F.; Bowles, R.P.; Meredith, W. Modeling life-span growth curves of cognition using longitudinal data with multiple samples and changing scales of measurement. Psychol. Methods 2009, 14, 126–149. [Google Scholar] [CrossRef] [PubMed]
- Hülür, G.; Ram, N.; Willis, S.L.; Schaie, K.W.; Gerstorf, D. Cognitive dedifferentiation with increasing age and proximity of death: Within-person evidence from the seattle longitudinal study. Psychol. Aging 2015, 30, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Specht, J.; Egloff, B.; Schmukle, S.C. Stability and change of personality across the life course: The impact of age and major life events on mean-level and rank-order stability of the big five. J. Personal. Soc. Psychol. 2011, 101, 862–882. [Google Scholar] [CrossRef] [PubMed]
- Wrzus, C.; Roberts, B.W. Processes of personality development in adulthood: The tessera framework. Personal. Soc. Psychol. Rev. 2017, 21, 253–277. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M. Looking at intelligence from so-called noncognitive traits: Be open to change. J. Intell. 2014, 2, 1–3. [Google Scholar] [CrossRef]
- Ackerman, P.L. The search for personality–intelligence relations: Methodological and conceptual issues. J. Intell. 2018, 6. [Google Scholar] [CrossRef]
- Cattell, R.B. The description of personality: I. Foundations of trait measurement. Psychol. Rev. 1943, 50, 559–594. [Google Scholar] [CrossRef]
- Cattell, R.B. Personality and Motivation Structure and Measurement; World Book Co.: Oxford, UK, 1957. [Google Scholar]
- Ackerman, P.L. A theory of adult intellectual development: Process, personality, interests, and knowledge. Intelligence 1996, 22, 227–257. [Google Scholar] [CrossRef]
- Zhang, J.; Ziegler, M. Interaction effects between openness and fluid intelligence predicting scholastic performance. J. Intell. 2015, 3, 91–110. [Google Scholar] [CrossRef]
- Ziegler, M.; Cengia, A.; Mussel, P.; Gerstorf, D. Openness as a buffer against cognitive decline: The openness-fluid-crystallized-intelligence (OFCI) model applied to late adulthood. Psychol. Aging 2015, 30, 573–588. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.; Danay, E.; Heene, M.; Asendorpf, J.; Bühner, M. Openness, fluid intelligence, and crystallized intelligence: Toward an integrative model. J. Res. Personal. 2012, 46, 173–183. [Google Scholar] [CrossRef]
- Von Stumm, S.; Deary, I.J. Intellect and cognitive performance in the lothian birth cohort 1936. Psychol. Aging 2013, 28, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Cattell, R.B. Intelligence: Its Structure, Growth and Action; North-Holland: Oxford, UK, 1987. [Google Scholar]
- Tett, R.P.; Burnett, D.D. A personality trait-based interactionist model of job performance. J. Appl. Psychol. 2003, 88, 500–517. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.; Bensch, D.; Maaß, U.; Schult, V.; Vogel, M.; Bühner, M. Big five facets as predictor of job training performance: The role of specific job demands. Learn. Individ. Differ. 2014, 29, 1–7. [Google Scholar] [CrossRef]
- DeYoung, C.G.; Quilty, L.C.; Peterson, J.B. Between facets and domains: 10 aspects of the big five. J. Personal. Soc. Psychol. 2007, 93, 880–896. [Google Scholar] [CrossRef] [PubMed]
- Fayn, K.; Silvia, P.J.; MacCann, C.; Tiliopoulos, N. Interested in different things or in different ways? J. Individ. Differ. 2017, 38, 265–273. [Google Scholar] [CrossRef]
- Von Stumm, S. Better open than intellectual: The benefits of investment personality traits for learning. Personal. Soc. Psychol. Bull. 2018, 44, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.; Danay, E.; Schölmerich, F.; Bühner, M. Predicting academic success with the big 5 rated from different points of view: Self-rated, other rated and faked. Eur. J. Personal. 2010, 24, 341–355. [Google Scholar] [CrossRef]
- DeYoung, C.G. Intelligence and personality. In The Cambridge Handbook of Intelligence; Sternberg, R.J., Kaufman, S.B., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 711–737. [Google Scholar]
- von Stumm, S.; Ackerman, P.L. Investment and intellect: A review and meta-analysis. Psychol. Bull. 2013, 139, 841–869. [Google Scholar] [CrossRef] [PubMed]
- DeYoung, C.G.; Quilty, L.C.; Peterson, J.B.; Gray, J.R. Openness to experience, intellect, and cognitive ability. J. Personal. Assess. 2014, 96, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Mussel, P. Intellect: A theoretical framework for personality traits related to intellectual achievements. J. Personal. Soc. Psychol. 2013, 104, 885–906. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, P.L. Domain-specific knowledge as the “dark matter” of adult intelligence: Gf/Gc, personality and interest correlates. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2000, 55, P69–P84. [Google Scholar] [CrossRef]
- Holland, J.L. The Psychology of Vocational Choice: A Theory of Personality Types and Model Environments; Blaisdell: Oxford, UK, 1966. [Google Scholar]
- Mount, M.K.; Barrick, M.R.; Scullen, S.M.; Rounds, J. Higher-order dimensions of the big five personality traits and the big six vocational interest types. Pers. Psychol. 2005, 58, 447–478. [Google Scholar] [CrossRef]
- Sullivan, B.A.; Hansen, J.-I.C. Mapping associations between interests and personality: Toward a conceptual understanding of individual differences in vocational behavior. J. Couns. Psychol. 2004, 51, 287–289. [Google Scholar] [CrossRef]
- Wille, B.; De Fruyt, F.; Dingemanse, S.A.; Vergauwe, J. A closer look at the psychological diversity within holland interest types: Construct validation of the career insight questionnaire. Consult. Psychol. J. Pract. Res. 2015, 67, 234–257. [Google Scholar] [CrossRef]
- Pozzebon, J.A.; Ashton, M.C.; Visser, B.A. Major changes: Personality, ability, and congruence in the prediction of academic outcomes. J. Career Assess. 2014, 22, 75–88. [Google Scholar] [CrossRef]
- Wille, B.; De Fruyt, F. Vocations as a source of identity: Reciprocal relations between big five personality traits and riasec characteristics over 15 years. J. Appl. Psychol. 2014, 99, 262–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackerman, P.L.; Heggestad, E.D. Intelligence, personality, and interests: Evidence for overlapping traits. Psychol. Bull. 1997, 121, 219–245. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, A.S.; McLean, J.E. An investigation into the relationship between interests and intelligence. J. Clin. Psychol. 1998, 54, 279–295. [Google Scholar] [CrossRef]
- Ackerman, P.L. Intelligence, personality and interests in the career choice process. J. Career Assess. 2003, 11, 205–218. [Google Scholar] [CrossRef]
- Funder, D.C. The Personality Puzzle: Seventh International Student Edition; WW Norton & Company: New York, NY, USA, 2015. [Google Scholar]
- Roberts, B.W.; Kuncel, N.R.; Shiner, R.; Caspi, A.; Goldberg, L.R. The power of personality: The comparative validity of personality traits, socioeconomic status, and cognitive ability for predicting important life outcomes. Perspect. Psychol. Sci. 2007, 2, 313–345. [Google Scholar] [CrossRef] [PubMed]
- Fleeson, W. Toward a structure-and process-integrated view of personality: Traits as density distributions of states. J. Personal. Soc. Psychol. 2001, 80, 1011–1027. [Google Scholar] [CrossRef]
- Fleeson, W.; Jayawickreme, E. Whole trait theory. J. Res. Personal. 2015, 56, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Baumert, A.; Schmitt, M.; Perugini, M.; Johnson, W.; Blum, G.; Borkenau, P.; Costantini, G.; Denissen, J.J.; Fleeson, W.; Grafton, B. Integrating personality structure, personality process, and personality development. Eur. J. Personal. 2017, 31, 503–528. [Google Scholar] [CrossRef]
- Wilson, R.E.; Thompson, R.J.; Vazire, S. Are fluctuations in personality states more than fluctuations in affect? J. Res. Personal. 2017, 69, 110–123. [Google Scholar] [CrossRef] [Green Version]
- Knogler, M.; Harackiewicz, J.M.; Gegenfurtner, A.; Lewalter, D. How situational is situational interest? Investigating the longitudinal structure of situational interest. Contemp. Educ. Psychol. 2015, 43, 39–50. [Google Scholar] [CrossRef]
- Rauthmann, J.F.; Gallardo-Pujol, D.; Guillaume, E.M.; Todd, E.; Nave, C.S.; Sherman, R.A.; Ziegler, M.; Jones, A.B.; Funder, D.C. The situational eight diamonds: A taxonomy of major dimensions of situation characteristics. J. Personal. Soc. Psychol. 2014, 107, 677–718. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.; Horstmann, K. Discovering the second side of the coin: Integrating situational perception into psychological assessment. Eur. J. Psychol. Assess. 2015, 31, 69–74. [Google Scholar] [CrossRef]
- De Vries, R.E.; Tybur, J.M.; Pollet, T.V.; van Vugt, M. Evolution, situational affordances, and the hexaco model of personality. Evol. Hum. Behav. 2016, 37, 407–421. [Google Scholar] [CrossRef]
- Ziegler, M. B5PS. Big Five Inventory of Personality in Occupational Situations; Schuhfried GmbH: Mödling, Austria, 2014. [Google Scholar]
- Horstmann, K.T.; Ziegler, M. Situational perception and affect: Barking up the wrong tree? Personal. Individ. Differ. 2018. [Google Scholar] [CrossRef]
- Pekrun, R.; Goetz, T.; Titz, W.; Perry, R.P. Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research. Educ. Psychol. 2002, 37, 91–105. [Google Scholar] [CrossRef]
- Fayn, K.; MacCann, C.; Tiliopoulos, N.; Silvia, P.J. Aesthetic emotions and aesthetic people: Openness predicts sensitivity to novelty in the experiences of interest and pleasure. Front. Psychol. 2015, 6, 1877. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.; Cengia, A.; Kemper, C.J.; Roberts, R. An ipip based big five questionnaire with 42 facets for english and german. 2018; in preparation. [Google Scholar]
- Goldberg, L.R.; Johnson, J.A.; Eber, H.W.; Hogan, R.; Ashton, M.C.; Cloninger, C.R.; Gough, H.G. The international personality item pool and the future of public-domain personality measures. J. Res. Personal. 2006, 40, 84–96. [Google Scholar] [CrossRef]
- Bergmann, C.; Eder, F. Allgemeiner Interessen-Struktur-Test Mit Umwelt-Struktur-Test (UST-R): AIST-R; Manual; Beltz-Test Hogrefe: Göttingen, Germany, 2005. [Google Scholar]
- Holland, J.L. A theory of vocational choice. J. Couns. Psychol. 1959, 6, 35–45. [Google Scholar] [CrossRef]
- Raven, J.C. Standard Progressive Matrices (SPM); Beltz Test GmbH: Göttingen, Germany, 1998. [Google Scholar]
- Schipolowski, S.; Wilhelm, O.; Schroeders, U. On the nature of crystallized intelligence: The relationship between verbal ability and factual knowledge. Intelligence 2014, 46, 156–168. [Google Scholar] [CrossRef]
- Snijders, T.; Bosker, R. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modelling; Sage: London, UK, 2012. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.r-project.org/ (accessed on 31 July 2018).
- Stanley, D. Apatables: Create American Psychological Association (APA) Style Tables. R Package Version 1.5.1. Available online: https://CRAN.R-project.org/package=apaTables (accessed on 31 July 2018).
- Raudenbush, S.W.; Bryk, A.S. Hierarchical Linear Models: Applications and Data Analysis Methods; Sage: London, UK, 2002. [Google Scholar]
- Bolger, N.; Laurenceau, J.-P. Intensive Longitudinal Methods: An Introduction to Diary and Experience Sampling Research; Guilford Press: New York, NY, USA; London, UK, 2013. [Google Scholar]
- Enders, C.K.; Tofighi, D. Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychol. Methods 2007, 12, 121–138. [Google Scholar] [CrossRef] [PubMed]
- Scherbaum, C.A.; Ferreter, J.M. Estimating statistical power and required sample sizes for organizational research using multilevel modeling. Organ. Res. Methods 2009, 12, 347–367. [Google Scholar] [CrossRef]
- Maas, C.J.M.; Hox, J.J. Sufficient sample sizes for multilevel modeling. Methodology 2005, 1, 86–92. [Google Scholar] [CrossRef]
- Van der Leeden, R.; Busing, F.M. First Iteration versus Final IGLS/RIGLS Estimators in Two-Level Models: A Monte Carlo Study with ML3; Department of Psychology, University of Leiden: Leiden, The Netherlands, 1994. [Google Scholar]
- Cumming, G. The new statistics: Why and how. Psychol. Sci. 2014, 25, 7–29. [Google Scholar] [CrossRef] [PubMed]
- Finnigan, K.M.; Vazire, S. The incremental validity of average state self-reports over global self-reports of personality. J. Personal. Soc. Psychol. 2018, 115, 321–337. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-M.; Kunter, M.; Lüdtke, O.; Trautwein, U.; Ryan, R.M. What makes lessons interesting? The role of situational and individual factors in three school subjects. J. Educ. Psychol. 2008, 100, 460–472. [Google Scholar] [CrossRef]
- Ziegler, M.; Horstmann, K.T.; Ziegler, J. Personality in Situations: Going Beyond the OCEAN and Introducing the Situation Five. Psychol. Assess. 2018. accepted. [Google Scholar]
- Zhang, J.; Ziegler, M. How do the big five influence scholastic performance? A big five-narrow traits model or a double mediation model. Learn. Individ. Differ. 2016, 50, 93–102. [Google Scholar] [CrossRef]
- Ziegler, M.; Brunner, M. Test standards and psychometric modeling. In Psychosocial Skills and School Systems in the 21st Century; Lipnevich, A.A., Preckel, F., Roberts, R., Eds.; Springer: Göttingen, Germany, 2016; pp. 29–55. [Google Scholar]
- Brogden, H.E.; Taylor, E.K. The theory and classification of criterion bias. Educ. Psychol. Meas. 1950, 10, 159–183. [Google Scholar] [CrossRef]
- Poropat, A.E. A meta-analysis of the five-factor model of personality and academic performance. Psychol. Bull. 2009, 135, 322–338. [Google Scholar] [CrossRef] [PubMed]
- Danner, D.; Hagemann, D.; Schankin, A.; Hager, M.; Funke, J. Beyond IQ: A latent state-trait analysis of general intelligence, dynamic decision making, and implicit learning. Intelligence 2011, 39, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, F.L. A general theoretical integrative model of individual differences in interests, abilities, personality traits, and academic and occupational achievement: A commentary on four recent articles. Perspect. Psychol. Sci. 2014, 9, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Curtis, R.G.; Windsor, T.D.; Soubelet, A. The relationship between big-5 personality traits and cognitive ability in older adults—A review. Aging Neuropsychol. Cognit. 2014, 22, 42–71. [Google Scholar] [CrossRef] [PubMed]
- Schneider, W.J.; McGrew, K. The cattell-horn-carroll model of intelligence. In Contemporary Intellectual Assessment: Theories, Tests, and Issues; Flanagan, D.P., Harrison, P.L., Eds.; Guilford Press: New York, NY, USA, 2012; pp. 99–144. [Google Scholar]
- Cattell, R.B. The measurement of adult intelligence. Psychol. Bull. 1943, 40, 153–193. [Google Scholar] [CrossRef]
1 | The material on the OSF page also includes Table i showing regression analyses for a reduced set of predictors as recommended by an anonymous reviewer. |
Variable | M | SD (ICC) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Gf | 0.61 | 0.21 | |||||||||||
2. Grades | 2.92 | 0.65 | 0.19 | ||||||||||
[−0.10, 0.44] | |||||||||||||
3. Openness | 3.87 | 0.33 | −0.14 | 0.10 | |||||||||
[−0.39, 0.13] | [−0.18, 0.37] | ||||||||||||
4. Interest in Psychology | 4.01 | 0.37 | −0.06 | 0.02 | 0.38 | ||||||||
[−0.32, 0.21] | [−0.26, 0.29] | [0.13, 0.59] | |||||||||||
5. Investigative Interest | 3.03 | 0.70 | −0.10 | −0.15 | 0.46 | 0.54 | |||||||
[−0.36, 0.18] | [−0.41, 0.13] | [0.21, 0.65] | [0.32, 0.71] | ||||||||||
6. Artistic Interest | 3.77 | 0.83 | −0.22 | 0.12 | 0.68 | 0.21 | 0.28 | ||||||
[−0.46, 0.06] | [−0.17, 0.38] | [0.51, 0.81] | [−0.06, 0.46] | [0.01, 0.51] | |||||||||
7. Social Interest | 3.85 | 0.61 | −0.00 | 0.04 | 0.39 | 0.28 | 0.29 | 0.36 | |||||
[−0.27, 0.27] | [−0.24, 0.32] | [0.13, 0.59] | [0.01, 0.51] | [0.02, 0.52] | [0.09, 0.57] | ||||||||
8. Openness Mean State | 2.81 | 0.35 (0.28) | −0.05 | 0.21 | 0.44 | 0.20 | 0.29 | 0.30 | 0.13 | ||||
[−0.32, 0.22] | [−0.07, 0.46] | [0.19, 0.63] | [−0.07, 0.45] | [0.02, 0.52] | [0.03, 0.53] | [−0.15, 0.39] | |||||||
9. Interest in Psychology Mean State | 2.98 | 0.35 (0.30) | −0.08 | 0.11 | 0.29 | 0.20 | 0.19 | 0.11 | 0.27 | 0.61 | |||
[−0.34, 0.19] | [−0.17, 0.37] | [0.03, 0.52] | [−0.07, 0.44] | [−0.08, 0.44] | [−0.16, 0.37] | [0.00, 0.51] | [0.41, 0.75] | ||||||
10. Investigative Interest Mean State | 2.33 | 0.52 (0.40) | −0.03 | 0.20 | 0.38 | 0.32 | 0.44 | 0.40 | 0.16 | 0.72 | 0.49 | ||
[−0.30, 0.24] | [−0.08, 0.45] | [0.13, 0.59] | [0.05, 0.54] | [0.20, 0.64] | [0.14, 0.60] | [−0.11, 0.42] | [0.55, 0.83] | [0.26, 0.67] | |||||
11. Artistic Interest Mean State | 2.55 | 0.56 (0.43) | −0.16 | 0.21 | 0.23 | 0.10 | 0.13 | 0.51 | 0.22 | 0.29 | 0.23 | 0.53 | |
[−0.41, 0.11] | [−0.07, 0.46] | [−0.04, 0.47] | [−0.18, 0.35] | [−0.15, 0.38] | [0.27, 0.68] | [−0.05, 0.47] | [0.03, 0.52] | [−0.04, 0.47] | [0.30, 0.70] | ||||
12. Social Interest Mean State | 2.31 | 0.58 (0.48) | 0.04 | 0.29 | 0.14 | 0.20 | 0.01 | 0.30 | 0.34 | 0.36 | 0.33 | 0.49 | 0.34 |
[−0.23, 0.30] | [0.02, 0.52] | [−0.13, 0.39] | [−0.07, 0.45] | [−0.26, 0.28] | [0.04, 0.53] | [0.08, 0.56] | [0.10, 0.57] | [0.07, 0.55] | [0.26, 0.67] | [0.08, 0.56] |
Model | AIC | p | |
---|---|---|---|
0 | Null model (random intercepts, no predictors) | 5568.7 | |
A1 | Random intercept model with interest in psychology as predictor | 4842.3 | <0.001 a |
A2 | Random coefficients model with interest in psychology as predictor | 4765.1 | <0.001 |
B1 | Random intercept model with investigative interest as predictor | 5071.9 | <0.001 a |
B2 | Random coefficients model with investigative interest as predictor | 4973.2 | <0.001 |
C1 | Random intercept model with artistic interest as predictor | 5291.6 | <0.001 a |
C2 | Random coefficients model with artistic interest as predictor | 5186.9 | <0.001 |
D1 | Random intercept model with social interest as predictor | 5389.4 | <0.001 a |
D2 | Random coefficients model with social interest as predictor | 5291.4 | <0.001 |
E1 | Random intercept model with all four interests as predictors | 4456.1 | <0.001 a |
E2 | Random coefficients model with all four interests as predictors | 4413.1 | <0.001 b |
Model | A | B | C | D | E | |||||
---|---|---|---|---|---|---|---|---|---|---|
1: Fixed Effects | Estimate | t | Estimate | t | Estimate | t | Estimate | t | Estimate | t |
Psychology Interest (within) | 0.41 (0.32) | 12.45 | 0.29 (0.03) | 9.30 | ||||||
Psychology Interest (between) | 0.60 (0.11) | 5.63 | 0.32 (0.09) | 3.56 | ||||||
Investigative Interest (within) | 0.32 (0.03) | 10.77 | 0.19 (0.02) | 8.67 | ||||||
Investigative Interest (between) | 0.52 (0.06) | 8.79 | 0.48 (0.07) | 6.67 | ||||||
Artistic Interest (within) | 0.26 (0.03) | 8.38 | 0.13 (0.02) | 6.20 | ||||||
Artistic Interest (between) | 0.19 (0.08) | 2.35 | −0.05 (0.05) | −0.8 | ||||||
Social Interest (within) | 0.23 (0.03) | 6.75 | 0.07 (0.02) | 2.92 | ||||||
Social Interest (between) | 0.23 (0.08) | 3.03 | −0.05 (0.05) | −0.93 | ||||||
2: Random Effects (variances) | Estimate | SD | Estimate | SD | Estimate | SD | Estimate | SD | Estimate | SD |
Psychology Interest (within) | 0.04 | 0.20 | 0.03 | 0.17 | ||||||
Investigative Interest (within) | 0.03 | 0.19 | 0.01 | 0.11 | ||||||
Artistic Interest (within) | 0.04 | 0.19 | 0.01 | 0.10 | ||||||
Social Interest (within) | 0.04 | 0.21 | 0.01 | 0.11 |
Predictor | b | b 95% CI [LL, UL] | beta | beta 95% CI [LL, UL] | sr2 | sr2 95% CI [LL, UL] | r | Fit | Difference |
---|---|---|---|---|---|---|---|---|---|
Block 1 | |||||||||
(Intercept) | 2.68 ** | [2.04, 3.32] | |||||||
Raven | 0.14 | [−0.05, 0.32] | 0.22 | [−0.07, 0.51] | 0.05 | [−0.06, 0.15] | 0.19 | ||
Openness | 0.18 | [−0.04, 0.40] | 0.27 | [−0.06, 0.60] | 0.06 | [−0.06, 0.17] | 0.13 | ||
Interest in Psychology | 0.06 | [−0.17, 0.30] | 0.10 | [−0.26, 0.46] | 0.01 | [−0.03, 0.05] | 0.04 | ||
Investigative Interest | −0.22 | [−0.46, 0.03] | −0.33 | [−0.71, 0.05] | 0.06 | [−0.06, 0.19] | −0.15 | ||
Within 1: Openness × Interest in Psychology | 0.71 | [−0.66, 2.07] | 0.18 | [−0.17, 0.52] | 0.02 | [−0.05, 0.10] | 0.07 | ||
Within 2: Openness × Investigative Interest | −0.26 | [−1.72, 1.21] | −0.06 | [−0.42, 0.30] | <0.01 | [−0.02, 0.03] | −0.05 | ||
R2 = 0.145 | |||||||||
95% CI [0.00, 0.24] | |||||||||
Block 2 | |||||||||
(Intercept) | 2.79 ** | [2.14, 3.44] | 2.79 ** | ||||||
Raven | 0.10 | [−0.08, 0.28] | 0.16 | [−0.13, 0.45] | 0.02 | [−0.05, 0.10] | 0.10 | ||
Openness | 0.20 | [−0.02, 0.41] | 0.29 | [−0.03, 0.61] | 0.06 | [−0.06, 0.18] | 0.20 | ||
Interest in Psychology | 0.11 | [−0.14, 0.35] | 0.16 | [−0.21, 0.54] | 0.01 | [−0.04, 0.07] | 0.11 | ||
Investigative Interest | −0.21 | [−0.45, 0.04] | −0.32 | [−0.70, 0.05] | 0.06 | [−0.06, 0.17] | −0.21 | ||
Within 1: Openness × Interest in Psychology | 0.81 | [−0.57, 2.20] | 0.20 | [−0.14, 0.55] | 0.03 | [−0.05, 0.11] | 0.81 | ||
Within 2: Openness × Investigative Interest | −0.71 | [−2.21, 0.78] | −0.18 | [−0.54, 0.19] | 0.02 | [−0.05, 0.08] | −0.71 | ||
Within 1 × Gf | 0.22 | [−0.01, 0.45] | 0.32 | [−0.02, 0.66] | 0.07 | [−0.06, 0.19] | 0.22 | ||
Within 2 × Gf | −0.14 | [−0.35, 0.06] | −0.22 | [−0.54, 0.10] | 0.04 | [−0.06, 0.13] | −0.14 | ||
R2 = 0.226 | ΔR2 = 0.08 | ||||||||
95% CI [<0.01, 0.31] | 95% CI [−0.05, 0.21] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziegler, M.; Schroeter, T.A.; Lüdtke, O.; Roemer, L. The Enriching Interplay between Openness and Interest: A Theoretical Elaboration of the OFCI Model and a First Empirical Test. J. Intell. 2018, 6, 35. https://doi.org/10.3390/jintelligence6030035
Ziegler M, Schroeter TA, Lüdtke O, Roemer L. The Enriching Interplay between Openness and Interest: A Theoretical Elaboration of the OFCI Model and a First Empirical Test. Journal of Intelligence. 2018; 6(3):35. https://doi.org/10.3390/jintelligence6030035
Chicago/Turabian StyleZiegler, Matthias, Titus A. Schroeter, Oliver Lüdtke, and Lena Roemer. 2018. "The Enriching Interplay between Openness and Interest: A Theoretical Elaboration of the OFCI Model and a First Empirical Test" Journal of Intelligence 6, no. 3: 35. https://doi.org/10.3390/jintelligence6030035
APA StyleZiegler, M., Schroeter, T. A., Lüdtke, O., & Roemer, L. (2018). The Enriching Interplay between Openness and Interest: A Theoretical Elaboration of the OFCI Model and a First Empirical Test. Journal of Intelligence, 6(3), 35. https://doi.org/10.3390/jintelligence6030035