A Cross-Lagged Panel Analysis of Psychometric Intelligence and Achievement in Reading and Math
Abstract
1. Introduction
2. Method
2.1. Measures
2.1.1. Intelligence
2.1.2. Achievement
2.2. Analyses
3. Results
4. Discussion
Author Contributions
Conflicts of Interest
References
- Ceci, S.J. How much does schooling influence general intelligence and its cognitive components? A reassessment of the evidence. Dev. Psychol. 1991, 27, 703–722. [Google Scholar] [CrossRef]
- Mayer, R.E. Intelligence and achievement. In Cambridge Handbook of Intelligence; Sternberg, R.J., Kaufman, S.B., Eds.; Cambridge University Press: New York, NY, USA, 2011; pp. 738–747. [Google Scholar]
- Jensen, A.R. The G Factor: The Science of Mental Ability; Praeger: Westport, CT, USA, 1998. [Google Scholar]
- Ceci, S.J. On Intelligence…More or Less: A Bio-Ecological Treatise on Intellectual Development; Prentice-Hall: Englewood Cliffs, NJ, USA, 1990. [Google Scholar]
- Ceci, S.J. On the relationship between microlevel and macrolevel processing efficiencies. Intelligence 1990, 14, 141–150. [Google Scholar] [CrossRef]
- Ferrer, E.; McArdle, J.J.; Shaywitz, B.A.; Holahan, J.M.; Marchione, K.; Shaywitz, S.E. Longitudinal models of developmental dynamics between reading and cognition from childhood to adolescence. Dev. Psychol. 2007, 43, 1460–1473. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, E.; Shaywitz, B.A.; Holahan, J.M.; Marchione, K.; Shaywitz, S.E. Uncoupling of reading and IQ over time: Empirical evidence for a definition of dyslexia. Psychol. Sci. 2010, 21, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Soares, D.L.; Lemos, G.C.; Primi, R.; Almeida, L.S. The relationship between intelligence and academic achievement throughout middle school: The role of students’ prior academic performance. Learn. Individ. Differ. 2015, 41, 73–78. [Google Scholar] [CrossRef]
- Reynolds, M.R.; Turek, J.J. A dynamic developmental link between verbal comprehension-knowledge (Gc) and reading comprehension: Verbal comprehension-knowledge drives positive change in reading comprehension. J. Sch. Psychol. 2012, 50, 841–863. [Google Scholar] [CrossRef] [PubMed]
- McGrew, K.S. Analysis of the major intelligence batteries according to a proposed comprehensive Gf-Gc framework. In Contemporary Intellectual Assessment: Theories, Tests, and Issues; Flanagan, D.P., Genshaft, J.L., Harrison, P.L., Eds.; Guilford Press: New York, NY, USA, 1997; pp. 151–180. [Google Scholar]
- McGrew, K.S.; Flanagan, D.P. The Intelligence Test Desk Reference (ITDR): Gf-Gc Cross-Battery Assessment; Allyn & Bacon: Boston, MA, USA, 1998. [Google Scholar]
- Flanagan, D.P.; McGrew, K.S.; Ortiz, S.O. The Wechsler Intelligence Scales and CHC Theory: A Contemporary Approach to Interpretation; Allyn & Bacon: Boston, MA, USA, 2000. [Google Scholar]
- Quinn, J.M.; Wagner, R.K.; Petscher, Y.; Lopez, D. Developmental relations between vocabulary knowledge and reading comprehension: A latent change score modeling study. Child Dev. 2015, 86, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Primi, R.; Ferrao, M.E.; Almeida, L.S. Fluid intelligence as a predictor of learning: A longitudinal multilevel approach applied to math. Learn. Individ. Differ. 2010, 20, 446–451. [Google Scholar] [CrossRef]
- Campbell, D.T.; Stanley, J.C. Experimental and Quasi-Experimental Designs for Research; Rand McNally: Chicago, IL, USA, 1963. [Google Scholar]
- Finkel, S.E. Causal Analysis with Panel Data; Sage: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Kenny, D.A. Correlation and Causality, 2nd ed.; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Crano, W.D.; Kenny, D.A.; Campbell, D.T. Does intelligence cause achievement? A cross-lagged panel analysis. J. Educ. Psychol. 1972, 63, 258–275. [Google Scholar] [CrossRef]
- Kellaghan, T. Intelligence and achievement in a disadvantaged population: A cross-lagged panel analysis. Ir. J. Educ. 1973, 7, 23–28. [Google Scholar]
- Rogosa, D. A critique of cross-lagged correlation. Psychol. Bull. 1980, 88, 245–258. [Google Scholar] [CrossRef]
- Ritchie, S.J.; Bates, T.C.; Plomin, R. Does learning to read improve intelligence? A longitudinal multivariate analysis in identical twins from age 7 to 16. Child Dev. 2015, 86, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Vitaro, F.; Brendgen, M.; Arseneault, L. The discordant MZ-twin method: One step closer to the holy grail of causality. Int. J. Behav. Dev. 2009, 33, 376–382. [Google Scholar] [CrossRef]
- Cole, D.A.; Preacher, K.J. Manifest variable path analysis: Potentially serious and misleading consequences due to uncorrected measurement error. Psychol. Methods 2014, 19, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Olson, R.K.; Keenan, J.M.; Byrne, B.; Samuelsson, S. Why do children differ in their development of reading and related skills? Sci. Stud. Read. 2014, 18, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Plomin, R.; Deary, I.J. Genetics and intelligence differences: Five special findings. Mol. Psychiatry 2015, 20, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Little, T.D. Longitudinal Structural Equation Modeling; Guilford: New York, NY, USA, 2013. [Google Scholar]
- Little, T.D.; Preacher, K.J.; Card, N.A.; Selig, J.P. New developments in latent variable panel analyses of longitudinal data. Int. J. Behav. Dev. 2007, 31, 357–365. [Google Scholar] [CrossRef]
- Burkholder, G.J.; Harlow, L.L. An illustration of a longitudinal cross-lagged design for larger structural equation models. Struct. Equ. Model. 2003, 10, 465–486. [Google Scholar] [CrossRef]
- McArdle, J.J. Latent variable modeling of differences and changes with longitudinal data. Annu. Rev. Psychol. 2009, 60, 577–605. [Google Scholar] [CrossRef] [PubMed]
- Selig, J.P.; Little, T.D. Autoregressive and cross-lagged panel analysis for longitudinal data. In Handbook of Developmental Research Methods; Laursen, B., Little, T.D., Card, N.A., Eds.; Guilford: New York, NY, USA, 2012; pp. 265–278. [Google Scholar]
- Newsom, J.T. Longitudinal Structural Equation Modeling: A Comprehensive Introduction; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Geiser, C. Data Analysis with Mplus; Guilford: New York, NY, USA, 2013. [Google Scholar]
- Wechsler, D. Wechsler Intelligence Scale for Children—Third Edition; The Psychological Corporation: San Antonio, TX, USA, 1991. [Google Scholar]
- Watkins, M.W.; Lei, P.-W.; Canivez, G.L. Psychometric intelligence and achievement: A cross-lagged panel analysis. Intelligence 2007, 35, 59–68. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Intelligence Scale for Children—Fourth Edition; The Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Wechsler, D. Wechsler Intelligence Scale for Children—Fourth Edition Technical and Interpretive Manual; The Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Canivez, G.L. Construct validity of the WISC-IV with a referred sample: Direct versus indirect hierarchical structures. Sch. Psychol. Q. 2014, 29, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Gomez, R.; Vance, A.; Watson, S.D. Structure of the Wechsler Intelligence Scale for Children—Fourth Edition in a group of children with ADHD. Front. Psychol. 2016, 7, 737. [Google Scholar] [CrossRef] [PubMed]
- Parkin, J.R.; Beaujean, A.A. The effects of Wechsler Intelligence Scale for Children—Fourth Edition cognitive abilities on math achievement. J. Sch. Psychol. 2012, 50, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Salvia, J.; Ysseldyke, J.E.; Bolt, S. Assessment in Special and Inclusive Education, 11th ed.; Wadsworth: Belmont, CA, USA, 2010. [Google Scholar]
- Breaux, K.C. Wechsler Individual Achievement Test-Third Edition Technical Manual; NCS Pearson: San Antonio, TX, USA, 2009. [Google Scholar]
- McGrew, K.S.; LaForte, E.M.; Schrank, F.A. Woodcock-Johnson IV: Technical Manual; Riverside: Rolling Meadows, IL, USA, 2014. [Google Scholar]
- Muthén, B.O.; Muthén, L.K. Mplus User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2017. [Google Scholar]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research, 2nd ed.; Guilford: New York, NY, USA, 2015. [Google Scholar]
- Giofrè, D.; Borella, E.; Mammarella, I.C. The relationship between intelligence, working memory, academic self-esteem, and academic achievement. J. Cogn. Psychol. 2017, 29, 731–747. [Google Scholar] [CrossRef]
- Alloway, T.P.; Alloway, R.G. Investigating the predictive roles of working memory and IQ in academic attainment. J. Exp. Child Psychol. 2010, 106, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Beaujean, A.A.; Parkin, J.; Parker, S. Comparing Cattell-Horn-Carroll factor models: Differences between bifactor and higher order factor models in predicting language achievement. Psychol. Assess. 2014, 26, 789–805. [Google Scholar] [CrossRef] [PubMed]
- Hamaker, E.L.; Kuiper, R.M.; Grasman, R.P. A critique of the cross-lagged panel model. Psychol. Methods 2015, 20, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Calvin, C.M.; Fernandes, C.; Smith, P.; Visscher, P.M.; Deary, I.J. Sex, intelligence and educational achievement in a national cohort of over 175,000 11-year-old schoolchildren in England. Intelligence 2010, 38, 424–432. [Google Scholar] [CrossRef]
- Cooper, C. Intelligence and Human Abilities: Structure, Origins and Applications; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Deary, I.J. Intelligence: A Very Short Introduction; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Duckworth, A.L.; Quinn, P.D.; Tsukayama, E. What No Child Left Behind leaves behind: The roles of IQ and self-control in predicting standardized achievement test scores and report card grades. J. Educ. Psychol. 2012, 104, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Gottfredson, L.S. Of what value is intelligence? In WISC-IV Clinical Assessment and Intervention, 2nd ed.; Prifitera, A., Saklofske, D.H., Weiss, L.G., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 545–563. [Google Scholar]
- Gottfredson, L.S. Hans Eysenck’s theory of intelligence, and what it reveals about him. Personal. Individ. Differ. 2016, 103, 116–127. [Google Scholar] [CrossRef]
- Kuncel, N.R.; Hezlett, S.A. Fact and fiction in cognitive ability testing for admissions and hiring decisions. Curr. Dir. Psychol. Sci. 2010, 19, 339–345. [Google Scholar] [CrossRef]
- Lubinski, D. Introduction to the special section on cognitive abilities: 100 years after Spearman’s (1904) “general intelligence, objectively determined and measured”. J. Personal. Soc. Psychol. 2004, 86, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Meldrum, R.C.; Petkovsek, M.A.; Boutwell, B.B.; Young, J.T.N. Reassessing the relationship between general intelligence and self-control in childhood. Intelligence 2017, 60, 1–9. [Google Scholar] [CrossRef]
- Ritchie, S. Intelligence: All that Matters; John Murray Learning: London, UK, 2015. [Google Scholar]
- Sternberg, R.J.; Kaufman, S.B. The Cambridge Handbook of Intelligence; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Macintosh, N.J. IQ and Human Intelligence, 2nd ed.; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Mulaik, S.A. Linear Causal Modeling with Structural Equations; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Shaddish, W.R.; Cook, T.D.; Campbell, D.T. Experimental and Quasi-Experimental Designs for Generalized Causal Inference; Wadsworth Cengage Learning: Belmont, CA, USA, 2002. [Google Scholar]
- Sternberg, R.J.; Gigorenko, E.; Bundy, D.A. The predictive value of IQ. Merrill-Palmer Q. 2001, 47, 1–41. [Google Scholar] [CrossRef]
- Schneider, W.; Niklas, F.; Schmiedeler, S. Intellectual development from early childhood to early adulthood: The impact of early IQ differences on stability and change over time. Learn. Individ. Differ. 2014, 32, 156–162. [Google Scholar] [CrossRef]
- Canivez, G.L.; Watkins, M.W.; James, T.; Good, R.; James, K. Incremental validity of WISC-IVUK factor index scores with a referred Irish sample: Predicting performance on the WIAT-IIUK. Br. J. Educ. Psychol. 2014, 84, 667–684. [Google Scholar] [CrossRef] [PubMed]
- Glutting, J.J.; Watkins, M.W.; Konold, T.R.; McDermott, P.A. Distinctions without a difference: The utility of observed versus latent factors from the WISC-IV in estimating reading and math achievement on the WIAT-II. J. Spec. Educ. 2006, 40, 103–114. [Google Scholar] [CrossRef]
- Schneider, W.; Niklas, F. Intelligence and verbal short-term memory/working memory: Their interrelationships from childhood to young adulthood and their impact on academic achievement. J. Intell. 2017, 5, 26. [Google Scholar] [CrossRef]
- Beebee, H.; Hitchcock, C.; Menzies, P. Oxford Handbook of Causation; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Imbens, G.W.; Rubin, D.B. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar]
- Pearl, J.; Glymour, M.; Jewell, N.P. Causal Inference in Statistics: A Primer; Wiley: Chichester, UK, 2016. [Google Scholar]
- Shadish, W.R. Campbell and Rubin: A primer and comparison of their approaches to causal inference in field settings. Psychol. Methods 2010, 15, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Watkins, M.W.; Glutting, J.J. Incremental validity of WISC-III profile elevation, scatter, and shape information for predicting reading and math achievement. Psychol. Assess. 2000, 12, 402–408. [Google Scholar] [CrossRef] [PubMed]
VCI1 | PRI1 | WMI1 | PSI1 | R1 | M1 | VCI2 | PRI2 | WMI2 | PSI2 | R2 | M2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
VCI1 | 1.00 | |||||||||||
PRI1 | 0.48 | 1.00 | ||||||||||
WMI1 | 0.46 | 0.55 | 1.00 | |||||||||
PSI1 | 0.31 | 0.38 | 0.39 | 1.00 | ||||||||
R1 | 0.41 | 0.35 | 0.42 | 0.22 | 1.00 | |||||||
M1 | 0.52 | 0.63 | 0.56 | 0.38 | 0.48 | 1.00 | ||||||
VCI2 | 0.72 | 0.52 | 0.42 | 0.27 | 0.43 | 0.56 | 1.00 | |||||
PRI2 | 0.43 | 0.73 | 0.46 | 0.40 | 0.32 | 0.56 | 0.59 | 1.00 | ||||
WMI2 | 0.49 | 0.52 | 0.65 | 0.34 | 0.39 | 0.55 | 0.56 | 0.54 | 1.00 | |||
PSI2 | 0.27 | 0.34 | 0.33 | 0.64 | 0.15 | 0.41 | 0.34 | 0.43 | 0.39 | 1.00 | ||
R2 | 0.48 | 0.41 | 0.44 | 0.25 | 0.69 | 0.49 | 0.59 | 0.42 | 0.52 | 0.27 | 1.00 | |
M2 | 0.51 | 0.63 | 0.60 | 0.50 | 0.42 | 0.73 | 0.57 | 0.60 | 0.60 | 0.50 | 0.56 | 1.00 |
M | 93.4 | 96.1 | 89.3 | 91.9 | 84.6 | 89.6 | 93.3 | 96.0 | 88.6 | 90.0 | 87.5 | 88.1 |
SD | 12.1 | 14.4 | 12.7 | 15.2 | 12.9 | 13.0 | 12.8 | 14.7 | 14.3 | 15.1 | 12.9 | 15.5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watkins, M.W.; Styck, K.M. A Cross-Lagged Panel Analysis of Psychometric Intelligence and Achievement in Reading and Math. J. Intell. 2017, 5, 31. https://doi.org/10.3390/jintelligence5030031
Watkins MW, Styck KM. A Cross-Lagged Panel Analysis of Psychometric Intelligence and Achievement in Reading and Math. Journal of Intelligence. 2017; 5(3):31. https://doi.org/10.3390/jintelligence5030031
Chicago/Turabian StyleWatkins, Marley W., and Kara M. Styck. 2017. "A Cross-Lagged Panel Analysis of Psychometric Intelligence and Achievement in Reading and Math" Journal of Intelligence 5, no. 3: 31. https://doi.org/10.3390/jintelligence5030031
APA StyleWatkins, M. W., & Styck, K. M. (2017). A Cross-Lagged Panel Analysis of Psychometric Intelligence and Achievement in Reading and Math. Journal of Intelligence, 5(3), 31. https://doi.org/10.3390/jintelligence5030031