A Cross-Lagged Panel Analysis of Psychometric Intelligence and Achievement in Reading and Math
Abstract
:1. Introduction
2. Method
2.1. Measures
2.1.1. Intelligence
2.1.2. Achievement
2.2. Analyses
3. Results
4. Discussion
Author Contributions
Conflicts of Interest
References
- Ceci, S.J. How much does schooling influence general intelligence and its cognitive components? A reassessment of the evidence. Dev. Psychol. 1991, 27, 703–722. [Google Scholar] [CrossRef]
- Mayer, R.E. Intelligence and achievement. In Cambridge Handbook of Intelligence; Sternberg, R.J., Kaufman, S.B., Eds.; Cambridge University Press: New York, NY, USA, 2011; pp. 738–747. [Google Scholar]
- Jensen, A.R. The G Factor: The Science of Mental Ability; Praeger: Westport, CT, USA, 1998. [Google Scholar]
- Ceci, S.J. On Intelligence…More or Less: A Bio-Ecological Treatise on Intellectual Development; Prentice-Hall: Englewood Cliffs, NJ, USA, 1990. [Google Scholar]
- Ceci, S.J. On the relationship between microlevel and macrolevel processing efficiencies. Intelligence 1990, 14, 141–150. [Google Scholar] [CrossRef]
- Ferrer, E.; McArdle, J.J.; Shaywitz, B.A.; Holahan, J.M.; Marchione, K.; Shaywitz, S.E. Longitudinal models of developmental dynamics between reading and cognition from childhood to adolescence. Dev. Psychol. 2007, 43, 1460–1473. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, E.; Shaywitz, B.A.; Holahan, J.M.; Marchione, K.; Shaywitz, S.E. Uncoupling of reading and IQ over time: Empirical evidence for a definition of dyslexia. Psychol. Sci. 2010, 21, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Soares, D.L.; Lemos, G.C.; Primi, R.; Almeida, L.S. The relationship between intelligence and academic achievement throughout middle school: The role of students’ prior academic performance. Learn. Individ. Differ. 2015, 41, 73–78. [Google Scholar] [CrossRef]
- Reynolds, M.R.; Turek, J.J. A dynamic developmental link between verbal comprehension-knowledge (Gc) and reading comprehension: Verbal comprehension-knowledge drives positive change in reading comprehension. J. Sch. Psychol. 2012, 50, 841–863. [Google Scholar] [CrossRef] [PubMed]
- McGrew, K.S. Analysis of the major intelligence batteries according to a proposed comprehensive Gf-Gc framework. In Contemporary Intellectual Assessment: Theories, Tests, and Issues; Flanagan, D.P., Genshaft, J.L., Harrison, P.L., Eds.; Guilford Press: New York, NY, USA, 1997; pp. 151–180. [Google Scholar]
- McGrew, K.S.; Flanagan, D.P. The Intelligence Test Desk Reference (ITDR): Gf-Gc Cross-Battery Assessment; Allyn & Bacon: Boston, MA, USA, 1998. [Google Scholar]
- Flanagan, D.P.; McGrew, K.S.; Ortiz, S.O. The Wechsler Intelligence Scales and CHC Theory: A Contemporary Approach to Interpretation; Allyn & Bacon: Boston, MA, USA, 2000. [Google Scholar]
- Quinn, J.M.; Wagner, R.K.; Petscher, Y.; Lopez, D. Developmental relations between vocabulary knowledge and reading comprehension: A latent change score modeling study. Child Dev. 2015, 86, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Primi, R.; Ferrao, M.E.; Almeida, L.S. Fluid intelligence as a predictor of learning: A longitudinal multilevel approach applied to math. Learn. Individ. Differ. 2010, 20, 446–451. [Google Scholar] [CrossRef]
- Campbell, D.T.; Stanley, J.C. Experimental and Quasi-Experimental Designs for Research; Rand McNally: Chicago, IL, USA, 1963. [Google Scholar]
- Finkel, S.E. Causal Analysis with Panel Data; Sage: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Kenny, D.A. Correlation and Causality, 2nd ed.; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Crano, W.D.; Kenny, D.A.; Campbell, D.T. Does intelligence cause achievement? A cross-lagged panel analysis. J. Educ. Psychol. 1972, 63, 258–275. [Google Scholar] [CrossRef]
- Kellaghan, T. Intelligence and achievement in a disadvantaged population: A cross-lagged panel analysis. Ir. J. Educ. 1973, 7, 23–28. [Google Scholar]
- Rogosa, D. A critique of cross-lagged correlation. Psychol. Bull. 1980, 88, 245–258. [Google Scholar] [CrossRef]
- Ritchie, S.J.; Bates, T.C.; Plomin, R. Does learning to read improve intelligence? A longitudinal multivariate analysis in identical twins from age 7 to 16. Child Dev. 2015, 86, 23–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitaro, F.; Brendgen, M.; Arseneault, L. The discordant MZ-twin method: One step closer to the holy grail of causality. Int. J. Behav. Dev. 2009, 33, 376–382. [Google Scholar] [CrossRef]
- Cole, D.A.; Preacher, K.J. Manifest variable path analysis: Potentially serious and misleading consequences due to uncorrected measurement error. Psychol. Methods 2014, 19, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Olson, R.K.; Keenan, J.M.; Byrne, B.; Samuelsson, S. Why do children differ in their development of reading and related skills? Sci. Stud. Read. 2014, 18, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Plomin, R.; Deary, I.J. Genetics and intelligence differences: Five special findings. Mol. Psychiatry 2015, 20, 98–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, T.D. Longitudinal Structural Equation Modeling; Guilford: New York, NY, USA, 2013. [Google Scholar]
- Little, T.D.; Preacher, K.J.; Card, N.A.; Selig, J.P. New developments in latent variable panel analyses of longitudinal data. Int. J. Behav. Dev. 2007, 31, 357–365. [Google Scholar] [CrossRef]
- Burkholder, G.J.; Harlow, L.L. An illustration of a longitudinal cross-lagged design for larger structural equation models. Struct. Equ. Model. 2003, 10, 465–486. [Google Scholar] [CrossRef]
- McArdle, J.J. Latent variable modeling of differences and changes with longitudinal data. Annu. Rev. Psychol. 2009, 60, 577–605. [Google Scholar] [CrossRef] [PubMed]
- Selig, J.P.; Little, T.D. Autoregressive and cross-lagged panel analysis for longitudinal data. In Handbook of Developmental Research Methods; Laursen, B., Little, T.D., Card, N.A., Eds.; Guilford: New York, NY, USA, 2012; pp. 265–278. [Google Scholar]
- Newsom, J.T. Longitudinal Structural Equation Modeling: A Comprehensive Introduction; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Geiser, C. Data Analysis with Mplus; Guilford: New York, NY, USA, 2013. [Google Scholar]
- Wechsler, D. Wechsler Intelligence Scale for Children—Third Edition; The Psychological Corporation: San Antonio, TX, USA, 1991. [Google Scholar]
- Watkins, M.W.; Lei, P.-W.; Canivez, G.L. Psychometric intelligence and achievement: A cross-lagged panel analysis. Intelligence 2007, 35, 59–68. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Intelligence Scale for Children—Fourth Edition; The Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Wechsler, D. Wechsler Intelligence Scale for Children—Fourth Edition Technical and Interpretive Manual; The Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Canivez, G.L. Construct validity of the WISC-IV with a referred sample: Direct versus indirect hierarchical structures. Sch. Psychol. Q. 2014, 29, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Gomez, R.; Vance, A.; Watson, S.D. Structure of the Wechsler Intelligence Scale for Children—Fourth Edition in a group of children with ADHD. Front. Psychol. 2016, 7, 737. [Google Scholar] [CrossRef] [PubMed]
- Parkin, J.R.; Beaujean, A.A. The effects of Wechsler Intelligence Scale for Children—Fourth Edition cognitive abilities on math achievement. J. Sch. Psychol. 2012, 50, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Salvia, J.; Ysseldyke, J.E.; Bolt, S. Assessment in Special and Inclusive Education, 11th ed.; Wadsworth: Belmont, CA, USA, 2010. [Google Scholar]
- Breaux, K.C. Wechsler Individual Achievement Test-Third Edition Technical Manual; NCS Pearson: San Antonio, TX, USA, 2009. [Google Scholar]
- McGrew, K.S.; LaForte, E.M.; Schrank, F.A. Woodcock-Johnson IV: Technical Manual; Riverside: Rolling Meadows, IL, USA, 2014. [Google Scholar]
- Muthén, B.O.; Muthén, L.K. Mplus User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2017. [Google Scholar]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research, 2nd ed.; Guilford: New York, NY, USA, 2015. [Google Scholar]
- Giofrè, D.; Borella, E.; Mammarella, I.C. The relationship between intelligence, working memory, academic self-esteem, and academic achievement. J. Cogn. Psychol. 2017, 29, 731–747. [Google Scholar] [CrossRef]
- Alloway, T.P.; Alloway, R.G. Investigating the predictive roles of working memory and IQ in academic attainment. J. Exp. Child Psychol. 2010, 106, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Beaujean, A.A.; Parkin, J.; Parker, S. Comparing Cattell-Horn-Carroll factor models: Differences between bifactor and higher order factor models in predicting language achievement. Psychol. Assess. 2014, 26, 789–805. [Google Scholar] [CrossRef] [PubMed]
- Hamaker, E.L.; Kuiper, R.M.; Grasman, R.P. A critique of the cross-lagged panel model. Psychol. Methods 2015, 20, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Calvin, C.M.; Fernandes, C.; Smith, P.; Visscher, P.M.; Deary, I.J. Sex, intelligence and educational achievement in a national cohort of over 175,000 11-year-old schoolchildren in England. Intelligence 2010, 38, 424–432. [Google Scholar] [CrossRef]
- Cooper, C. Intelligence and Human Abilities: Structure, Origins and Applications; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Deary, I.J. Intelligence: A Very Short Introduction; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Duckworth, A.L.; Quinn, P.D.; Tsukayama, E. What No Child Left Behind leaves behind: The roles of IQ and self-control in predicting standardized achievement test scores and report card grades. J. Educ. Psychol. 2012, 104, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Gottfredson, L.S. Of what value is intelligence? In WISC-IV Clinical Assessment and Intervention, 2nd ed.; Prifitera, A., Saklofske, D.H., Weiss, L.G., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 545–563. [Google Scholar]
- Gottfredson, L.S. Hans Eysenck’s theory of intelligence, and what it reveals about him. Personal. Individ. Differ. 2016, 103, 116–127. [Google Scholar] [CrossRef]
- Kuncel, N.R.; Hezlett, S.A. Fact and fiction in cognitive ability testing for admissions and hiring decisions. Curr. Dir. Psychol. Sci. 2010, 19, 339–345. [Google Scholar] [CrossRef]
- Lubinski, D. Introduction to the special section on cognitive abilities: 100 years after Spearman’s (1904) “general intelligence, objectively determined and measured”. J. Personal. Soc. Psychol. 2004, 86, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Meldrum, R.C.; Petkovsek, M.A.; Boutwell, B.B.; Young, J.T.N. Reassessing the relationship between general intelligence and self-control in childhood. Intelligence 2017, 60, 1–9. [Google Scholar] [CrossRef]
- Ritchie, S. Intelligence: All that Matters; John Murray Learning: London, UK, 2015. [Google Scholar]
- Sternberg, R.J.; Kaufman, S.B. The Cambridge Handbook of Intelligence; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Macintosh, N.J. IQ and Human Intelligence, 2nd ed.; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Mulaik, S.A. Linear Causal Modeling with Structural Equations; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Shaddish, W.R.; Cook, T.D.; Campbell, D.T. Experimental and Quasi-Experimental Designs for Generalized Causal Inference; Wadsworth Cengage Learning: Belmont, CA, USA, 2002. [Google Scholar]
- Sternberg, R.J.; Gigorenko, E.; Bundy, D.A. The predictive value of IQ. Merrill-Palmer Q. 2001, 47, 1–41. [Google Scholar] [CrossRef]
- Schneider, W.; Niklas, F.; Schmiedeler, S. Intellectual development from early childhood to early adulthood: The impact of early IQ differences on stability and change over time. Learn. Individ. Differ. 2014, 32, 156–162. [Google Scholar] [CrossRef]
- Canivez, G.L.; Watkins, M.W.; James, T.; Good, R.; James, K. Incremental validity of WISC-IVUK factor index scores with a referred Irish sample: Predicting performance on the WIAT-IIUK. Br. J. Educ. Psychol. 2014, 84, 667–684. [Google Scholar] [CrossRef] [PubMed]
- Glutting, J.J.; Watkins, M.W.; Konold, T.R.; McDermott, P.A. Distinctions without a difference: The utility of observed versus latent factors from the WISC-IV in estimating reading and math achievement on the WIAT-II. J. Spec. Educ. 2006, 40, 103–114. [Google Scholar] [CrossRef]
- Schneider, W.; Niklas, F. Intelligence and verbal short-term memory/working memory: Their interrelationships from childhood to young adulthood and their impact on academic achievement. J. Intell. 2017, 5, 26. [Google Scholar] [CrossRef]
- Beebee, H.; Hitchcock, C.; Menzies, P. Oxford Handbook of Causation; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Imbens, G.W.; Rubin, D.B. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar]
- Pearl, J.; Glymour, M.; Jewell, N.P. Causal Inference in Statistics: A Primer; Wiley: Chichester, UK, 2016. [Google Scholar]
- Shadish, W.R. Campbell and Rubin: A primer and comparison of their approaches to causal inference in field settings. Psychol. Methods 2010, 15, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Watkins, M.W.; Glutting, J.J. Incremental validity of WISC-III profile elevation, scatter, and shape information for predicting reading and math achievement. Psychol. Assess. 2000, 12, 402–408. [Google Scholar] [CrossRef] [PubMed]
VCI1 | PRI1 | WMI1 | PSI1 | R1 | M1 | VCI2 | PRI2 | WMI2 | PSI2 | R2 | M2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
VCI1 | 1.00 | |||||||||||
PRI1 | 0.48 | 1.00 | ||||||||||
WMI1 | 0.46 | 0.55 | 1.00 | |||||||||
PSI1 | 0.31 | 0.38 | 0.39 | 1.00 | ||||||||
R1 | 0.41 | 0.35 | 0.42 | 0.22 | 1.00 | |||||||
M1 | 0.52 | 0.63 | 0.56 | 0.38 | 0.48 | 1.00 | ||||||
VCI2 | 0.72 | 0.52 | 0.42 | 0.27 | 0.43 | 0.56 | 1.00 | |||||
PRI2 | 0.43 | 0.73 | 0.46 | 0.40 | 0.32 | 0.56 | 0.59 | 1.00 | ||||
WMI2 | 0.49 | 0.52 | 0.65 | 0.34 | 0.39 | 0.55 | 0.56 | 0.54 | 1.00 | |||
PSI2 | 0.27 | 0.34 | 0.33 | 0.64 | 0.15 | 0.41 | 0.34 | 0.43 | 0.39 | 1.00 | ||
R2 | 0.48 | 0.41 | 0.44 | 0.25 | 0.69 | 0.49 | 0.59 | 0.42 | 0.52 | 0.27 | 1.00 | |
M2 | 0.51 | 0.63 | 0.60 | 0.50 | 0.42 | 0.73 | 0.57 | 0.60 | 0.60 | 0.50 | 0.56 | 1.00 |
M | 93.4 | 96.1 | 89.3 | 91.9 | 84.6 | 89.6 | 93.3 | 96.0 | 88.6 | 90.0 | 87.5 | 88.1 |
SD | 12.1 | 14.4 | 12.7 | 15.2 | 12.9 | 13.0 | 12.8 | 14.7 | 14.3 | 15.1 | 12.9 | 15.5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watkins, M.W.; Styck, K.M. A Cross-Lagged Panel Analysis of Psychometric Intelligence and Achievement in Reading and Math. J. Intell. 2017, 5, 31. https://doi.org/10.3390/jintelligence5030031
Watkins MW, Styck KM. A Cross-Lagged Panel Analysis of Psychometric Intelligence and Achievement in Reading and Math. Journal of Intelligence. 2017; 5(3):31. https://doi.org/10.3390/jintelligence5030031
Chicago/Turabian StyleWatkins, Marley W., and Kara M. Styck. 2017. "A Cross-Lagged Panel Analysis of Psychometric Intelligence and Achievement in Reading and Math" Journal of Intelligence 5, no. 3: 31. https://doi.org/10.3390/jintelligence5030031
APA StyleWatkins, M. W., & Styck, K. M. (2017). A Cross-Lagged Panel Analysis of Psychometric Intelligence and Achievement in Reading and Math. Journal of Intelligence, 5(3), 31. https://doi.org/10.3390/jintelligence5030031