Cognitive Aging in the Seattle Longitudinal Study: Within-Person Associations of Primary Mental Abilities with Psychomotor Speed and Cognitive Flexibility
Abstract
:1. Introduction
1.1. Processing Speed and Cognitive Aging: Between-Person and within-Person Perspectives
1.2. Cognitive Flexibility and Cognitive Aging: Between-Person and within-Person Perspectives
1.3. The Present Study
2. Materials and Methods
2.1. Participants and Procedure
2.2. Measures
2.2.1. Primary Mental Abilities
2.2.2. Psychomotor Speed and Cognitive Flexibility
2.2.3. Age
2.3. Data Analysis
2.3.1. Detrending
2.3.2. Within-Person Couplings
3. Results
3.1. Within-Person Coupling between Primary Mental Abilities and Psychomotor Speed
3.2. Within-Person Coupling between Primary Mental Abilities and Cognitive Flexibility
4. Discussion
4.1. Within-Person Associations of Psychomotor Speed and Cognitive Flexibility with Primary Mental Abilities
4.2. Limitations and Outlook
5. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
SLS | Seattle Longitudinal Study |
References
- Salthouse, T.A. The processing speed theory of adult age differences in cognition. Psychol. Rev. 1996, 103, 403–428. [Google Scholar] [CrossRef] [PubMed]
- Verhaeghen, P.; Salthouse, T.A. Meta-analyses of age-cognition relations in adulthood: Estimates of linear and nonlinear age effects and structural models. Psychol. Bull. 1997, 122, 231–249. [Google Scholar] [CrossRef] [PubMed]
- Finkel, D.; Reynolds, C.; McArdle, J.J.; Pedersen, N.L. The longitudinal relationship between processing speed and cognitive ability: Genetic and environmental influences. Behav. Genet. 2005, 35, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Finkel, D.; Reynolds, C.A.; McArdle, J.J.; Pedersen, N.L. Age changes in processing speed as a leading indicator of cognitive aging. Psychol. Aging 2007, 22, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Ghisletta, P.; de Ribaupierre, A. A dynamic investigation of cognitive dedifferentiation with control for retest: Evidence from the Swiss Interdisciplinary Longitudinal Study on the Oldest Old. Psychol. Aging 2005, 20, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Ghisletta, P.; Lindenberger, U. Age-based structural dynamics between perceptual speed and knowledge in the Berlin Aging Study: Direct evidence for ability dedifferentiation in old age. Psychol. Aging 2003, 18, 696–713. [Google Scholar] [CrossRef] [PubMed]
- Ghisletta, P.; Lindenberger, U. Exploring structural dynamics within and between sensory and intellectual functioning in old and very old age: Longitudinal evidence from the Berlin Aging Study. Intelligence 2005, 33, 555–587. [Google Scholar] [CrossRef]
- Hertzog, C.; Dixon, R.A.; Hultsch, D.F.; MacDonald, S.W.S. Latent change models of adult cognition: Are changes in processing speed and working memory associated with changes in episodic memory? Psychol. Aging 2003, 18, 755–769. [Google Scholar] [CrossRef] [PubMed]
- Hultsch, D.F.; Hertzog, C.; Small, B.J.; McDonald-Miszczak, L.; Dixon, R.A. Short-term longitudinal change in cognitive performance in later life. Psychol. Aging 1992, 7, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Lemke, U.; Zimprich, D. Longitudinal changes in memory performance and processing speed in old age. Aging Neuropsychol. Cognit. 2005, 12, 57–77. [Google Scholar] [CrossRef]
- Robitaille, A.; Piccinin, A.M.; Muniz-Terrera, G.; Hoffman, L.; Johansson, B.; Deeg, D.J.; Aartsen, M.J.; Comijs, H.C.; Hofer, S.M. Longitudinal mediation of processing speed on age-related change in memory and fluid intelligence. Psychol. Aging 2013, 28, 887–901. [Google Scholar] [CrossRef] [PubMed]
- Sliwinski, M.; Buschke, H. Cross-sectional and longitudinal relationships among age, memory and processing speed. Psychol. Aging 1999, 14, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Sliwinski, M.; Buschke, H. Modeling intraindividual cognitive change in aging adults: Results from the Einstein Aging Studies. Aging Neuropsychol. C. 2004, 11, 196–211. [Google Scholar] [CrossRef]
- Stawski, R.S.; Sliwinski, M.J.; Hofer, S.M. Between-person and within-person associations among processing speed, attention switching, and working memory in younger and older adults. Exp. Aging Res. 2013, 39, 194–214. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.L.; Miller, T.P.; Tinklenberg, J.R. Correlates of memory decline: A 4-year longitudinal study of older adults with memory complaints. Psychol. Aging 1992, 7, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Zimprich, D. Cross-sectionally and longitudinally balanced effects of processing speed on intellectual abilities. Exp. Aging Res. 2002, 28, 231–251. [Google Scholar] [CrossRef] [PubMed]
- Zimprich, D.; Martin, M. Can longitudinal changes in processing speed explain longitudinal changes in fluid intelligence? Psychol. Aging 2002, 17, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Stankov, L. Aging, attention, and intelligence. Psychol. Aging 1988, 3, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Schaie, K.W. A test of behavioral rigidity. J. Abnorm. Psychol. 1955, 51, 504–610. [Google Scholar] [CrossRef]
- Lezak, M.D. Neuropsychological Assessment, 3rd ed.; New York: Oxford, UK, 1995. [Google Scholar]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognit. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed]
- Schaie, K.W. Developmental Influences on Adult Intelligence: The Seattle Longitudinal Study, 2nd ed.; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Lindenberger, U.; von Oertzen, T.; Ghisletta, P.; Hertzog, C. Cross-sectional age variance extraction: What’s change got to do with it? Psychol. Aging 2011, 26, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, P.C.M.; Campbell, C.G. The new person-specific paradigm in psychology. Curr. Dir. Psychol. 2009, 18, 112–117. [Google Scholar] [CrossRef]
- Lövdén, M.; Schmiedek, F.; Kennedy, K.M.; Rodrigue, K.M.; Lindenberger, U.; Raz, N. Does variability in cognitive performance correlate with frontal brain volume? Neuroimage 2013, 64, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Schmiedek, F.; Lövden, M.; Lindenberger, U. Keeping it steady: Older adults perform more consistently on cognitive tasks than younger adults. Psychol. Sci. 2013, 24, 1747–1754. [Google Scholar] [CrossRef] [PubMed]
- Schaie, K.W. Rigidity-flexibility and intelligence: A cross-sectional study of the adult lifespan from 20 to 70 years. Psychol. Monogr. 1958, 72, 1–26. [Google Scholar] [CrossRef]
- Schaie, K.W.; Dutta, R.; Willis, S.L. The relationship between rigidity-flexibility and cognitive abilities in adulthood. Psychol. Aging 1991, 6, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Verhaeghen, P.; Basak, C. Aging and switching of the focus of attention in working memory: Results from a modified N-back task. Q. J. Exp. Psychol. A 2005, 58, 134–154. [Google Scholar] [CrossRef] [PubMed]
- Thurstone, L.L.; Thurstone, T.G. Examiner Manual for the SRA Primary Mental Abilities Test; Science Research Associates: Chicago, IL, USA, 1949. [Google Scholar]
- Gerstorf, D.; Ram, N.; Hoppmann, C.; Willis, S.L.; Schaie, K.W. Cohort differences in cognitive aging and terminal decline in the Seattle Longitudinal Study. Dev. Psychol. 2011, 47, 1026–1041. [Google Scholar] [CrossRef] [PubMed]
- Hülür, G.; Ram, N.; Willis, S.; Schaie, K.W.; Gerstorf, D. Cognitive dedifferentiation with increasing age and proximity of death: Within-person evidence from the Seattle Longitudinal Study. Psychol. Aging 2015, 30, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Cattell, R.B. Intelligence: Its Structure, Growth and Action; Elsevier Science: New York, NY, USA, 1987. [Google Scholar]
- Horn, J.L.; Blankson, N. Foundations for Better Understanding of Cognitive Abilities. In Contemporary Intellectual Assessment. Theories, Tests and Issues, 2nd ed.; Harrison, P.L., Flanagan, D.P., Eds.; Guilford Press: New York, NY, USA, 2005; pp. 41–68. [Google Scholar]
- Carroll, J.B. Human Cognitive Abilities: A Survey of Factor-Analytic Studies; Cambridge University Press: New York, NY, USA, 1993. [Google Scholar]
- McGrew, K.S. CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence 2009, 37, 1–10. [Google Scholar] [CrossRef]
- Schneider, W.J.; McGrew, K. The Cattell-Horn-Carroll Model of Intelligence. In Contemporary Intellectual Assessment: Theories, Tests, and Issues, 3rd ed.; Flanagan, D., Harrison, P., Eds.; Guilford: New York, NY, USA, 2012; pp. 99–144. [Google Scholar]
- Mc Grew, K.S.; Evans, J. Internal and External Factorial Extensions to the Cattell-Horn-Carroll (CHC) Theory of Cognitive Abilities: A Review of Factor Analytic Research since Carroll’s Seminal 1993 Treatise; Institute for Applied Psychometrics: St. Cloud, MN, USA, 2004. [Google Scholar]
- Box, G.E.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden-Day: New York, NY, USA, 1976. [Google Scholar]
- Chatfield, C. The Analysis of Time Series: An. Introduction; CRC Press: New York, NY, USA, 2004. [Google Scholar]
- Ram, N.; Gerstorf, D. Time-structured and net intraindividual variability: Tools for examining the development of dynamic characteristics and processes. Psychol. Aging 2009, 24, 778–791. [Google Scholar] [CrossRef] [PubMed]
- Shumway, R.H.; Stoffer, D.S. Time Series Analysis and Its Applications: With R Examples; Springer: New York, NY, USA, 2006. [Google Scholar]
- Freund, R.J.; Littell, R.C.; Spector, P.C. SAS System for Linear Models; SAS Institute Inc.: Cary, NC, USA, 1986. [Google Scholar]
- Snijders, T.A.B.; Bosker, R.J. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling; Sage: London, UK, 1999. [Google Scholar]
- Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D.; Schabenberger, O. SAS for Mixed Models, 2nd ed.; SAS Institute: Cary, NC, USA, 2006. [Google Scholar]
- Bosworth, H.B.; Schaie, K.W.; Willis, S.L. Cognitive and sociodemographic risk factors for mortality in the Seattle Longitudinal Study. J. Gerontol. B Psychol. 1999, 54, 273–282. [Google Scholar] [CrossRef]
- Bosworth, H.B.; Schaie, K.W.; Willis, S.L.; Siegler, I.C. Age and distance to death in the Seattle Longitudinal Study. Res. Aging 1999, 21, 723–738. [Google Scholar] [CrossRef]
- Hertzog, C. The influence of cognitive slowing on age differences in intelligence. Dev. Psychol. 1989, 25, 636–651. [Google Scholar] [CrossRef]
- Hertzog, C.; Bleckley, M.K. Age differences in the structure of intelligence—Influences of information processing speed. Intelligence 2001, 29, 191–217. [Google Scholar] [CrossRef]
- Wilhelm, O.; Schulze, R. The relation of speeded and unspeeded reasoning with mental speed. Intelligence 2003, 30, 537–554. [Google Scholar] [CrossRef]
- Baltes, P.B.; Cornelius, S.W.; Spiro, A.; Nesselroade, J.R.; Willis, S.L. Integration vs. differentiation of fluid-crystallized intelligence in old age. Dev. Psychol. 1980, 16, 625–635. [Google Scholar] [CrossRef]
- Baltes, P.B.; Reuter-Lorenz, P.A.; Rösler, F. Lifespan Development and the Brain: The Perspective of Biocultural Co-Constructivism; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Schaie, K.W.; Maitland, S.B.; Willis, S.L. Longitudinal Studies of Cognitive Dedifferentiation in Older Adults. In Proceedings of the Cognitive Aging Conference, Atlanta, GA, USA, 27–30 April 2000.
- Kane, M.J.; Bleckley, M.K.; Conway, A.R.A.; Engle, R.W. A controlled-attention view of working-memory capacity. J. Exp. Psychol. Gen. 2001, 130, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Schaie, K.W.; Willis, S.L.; Pennak, S. An historical framework for cohort differences in intelligence. Res. Hum. Dev. 2005, 2, 43–67. [Google Scholar] [CrossRef] [PubMed]
Sample | n | Age at Baseline | % Women | Years of Education | ||||
---|---|---|---|---|---|---|---|---|
M | SD | Range | M | SD | Range | |||
Whole sample | 582 | 40.96 | 10.07 | 21–66 | 59 | 15.00 | 2.63 | 8–20 |
Baseline in 1956 | 93 | 40.12 | 9.42 | 22–61 | 57 | 14.89 | 2.72 | 8–20 |
Baseline in 1963 | 153 | 40.34 | 9.13 | 21–64 | 65 | 14.33 | 2.48 | 8–20 |
Baseline in 1970 | 126 | 41.01 | 10.15 | 22–65 | 58 | 14.45 | 2.57 | 8–20 |
Baseline in 1977 | 107 | 42.11 | 11.46 | 23–66 | 52 | 15.72 | 2.45 | 8–20 |
Baseline in 1984 | 103 | 41.36 | 10.42 | 24–63 | 61 | 16.01 | 2.55 | 12–20 |
Primary Mental Ability | Coupling Parameter γ10 (SE) | Linear Age Change in the Coupling Parameter γ20 (SE) | Quadratic Age Change in the Coupling Parameter γ30 (SE) | Variance of the Coupling Parameter σ2u1 (SE) | Residual Variance σ2e (SE) | Pseudo R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Number Ability | 0.177 * | (0.034) | 0.047 * | (0.023) | 0.010 | (0.008) | 0.229 * | (0.030) | 6.297 * | (0.166) | 18% |
Verbal Meaning | 0.201 * | (0.036) | 0.067 * | (0.023) | 0.013 | (0.008) | 0.274 * | (0.037) | 6.156 * | (0.167) | 20% |
Word Fluency | 0.108 * | (0.040) | −0.010 | (0.026) | 0.005 | (0.009) | 0.340 * | (0.043) | 8.136 * | (0.216) | 20% |
Inductive Reasoning | 0.106 * | (0.031) | 0.044 * | (0.020) | 0.013 | (0.007) | 0.210 * | (0.025) | 4.527 * | (0.120) | 21% |
Spatial Orientation | 0.090 * | (0.038) | 0.087 * | (0.026) | 0.031 * | (0.009) | 0.265 * | (0.037) | 8.115 * | (0.215) | 16% |
Primary Mental Ability | Coupling Parameter γ10 (SE) | Linear Age Change in the Coupling Parameter γ20 (SE) | Quadratic Age Change in the Coupling Parameter γ30 (SE) | Variance of the Coupling Parameter σ2u1 (SE) | Residual Variance σ2e (SE) | Pseudo R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Number Ability | 0.060 * | (0.023) | 0.034 * | (0.016) | 0.009 | (0.006) | 0.095 * | (0.014) | 6.543 * | (0.172) | 15% |
Verbal Meaning | 0.038 | (0.026) | 0.026 | (0.016) | 0.012 * | (0.006) | 0.168 * | (0.023) | 6.239 * | (0.172) | 19% |
Word Fluency | 0.013 | (0.028) | 0.021 | (0.019) | 0.001 | (0.007) | 0.149 * | (0.023) | 8.649 * | (0.233) | 14% |
Inductive Reasoning | 0.057 * | (0.021) | 0.021 | (0.014) | 0.009 | (0.005) | 0.089 * | (0.012) | 4.759 * | (0.126) | 17% |
Spatial Orientation | 0.027 | (0.029) | −0.035 | (0.018) | −0.017 * | (0.006) | 0.196 * | (0.025) | 7.775 * | (0.210) | 19% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hülür, G.; Ram, N.; Willis, S.L.; Schaie, K.W.; Gerstorf, D. Cognitive Aging in the Seattle Longitudinal Study: Within-Person Associations of Primary Mental Abilities with Psychomotor Speed and Cognitive Flexibility. J. Intell. 2016, 4, 12. https://doi.org/10.3390/jintelligence4030012
Hülür G, Ram N, Willis SL, Schaie KW, Gerstorf D. Cognitive Aging in the Seattle Longitudinal Study: Within-Person Associations of Primary Mental Abilities with Psychomotor Speed and Cognitive Flexibility. Journal of Intelligence. 2016; 4(3):12. https://doi.org/10.3390/jintelligence4030012
Chicago/Turabian StyleHülür, Gizem, Nilam Ram, Sherry L. Willis, K. Warner Schaie, and Denis Gerstorf. 2016. "Cognitive Aging in the Seattle Longitudinal Study: Within-Person Associations of Primary Mental Abilities with Psychomotor Speed and Cognitive Flexibility" Journal of Intelligence 4, no. 3: 12. https://doi.org/10.3390/jintelligence4030012