Beyond Global IQ: Identifying Subgroups of Intellectual Functioning in Dyslexia Through Latent Profile Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Subsection
2.3. Analytical Strategy
3. Results
LPA Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| LPA | Latent Profile Analysis |
| SB5 | Stanford-Binet Intelligence Scales, Fifth Edition |
| SES | Socio-economic Status |
| AIC | Akaike Information Criterion |
| BIC | Bayesian Information Criterion |
| MALCP | Minimum Average Latent Class Probabilities |
| SLD | Specific Learning Disorder |
| PSW | Pattern of Strengths and Weaknesses |
| WM | Working Memory |
References
- Abu-Hamour, Bashir, and Hanan Al Hmouz. 2020. Cattell-Horn-Carroll broad cognitive ability profiles for dyslexia and intellectual disability. International Journal of Inclusive Education 24: 1444–60. [Google Scholar] [CrossRef]
- Bonovas, Stefanos, and Daniele Piovani. 2023. Simpson’s Paradox in Clinical Research: A Cautionary Tale. Journal of Clinical Medicine 12: 1633. [Google Scholar] [CrossRef]
- Cainelli, Elisa, Barbara Carretti Luca Vedovelli, and Patrizia Bisiacchi. 2023. EEG correlates of developmental dyslexia: A systematic review. Annals of Dyslexia 73: 184–213. [Google Scholar] [CrossRef] [PubMed]
- Capin, Philip, Eunsoo Cho, Jeremy Miciak, Greg Roberts, and Sharon Vaughn. 2021. Examining the reading and cognitive profiles of students with significant reading comprehension difficulties. Learning Disability Quarterly 44: 183–96. [Google Scholar] [CrossRef]
- Chalmpe, Maria, and Filippos Vlachos. 2024. Are there distinct subtypes of developmental dyslexia? Frontiers in Behavioral Neuroscience 18: 1512892. [Google Scholar] [CrossRef]
- Clark, Alexandra L., Anny Reyes, Jordana Breton, Melissa Petersen, Sid O’ Bryant, and Stephanie M. Grasso. 2024. Heterogeneity in cognitive profiles of monolingual and bilingual Hispanic/Latino older adults in HABS-HD. Journal of the International Neuropsychological Society 30: 828–40. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Hillsdale: Lawrence Erlbaum Associates, Publishers. [Google Scholar]
- Collins, Linda, and Stephanie Lanza. 2010. Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences. Hoboken: John Wiley & Sons, Inc. [Google Scholar] [CrossRef]
- Dębska, Agnieszka, Magdalena Łuniewska, Julian Zubek, Katarzyna Chyl, Agnieszka Dynak, Gabriela Dzięgiel-Fivet, Joanna Plewko, Katarzyna Jednoróg, and Anna Grabowska. 2022. The cognitive basis of dyslexia in school-aged children: A multiple case study in a transparent orthography. Developmental Science 25: e13173. [Google Scholar] [CrossRef]
- Dombrowski, Stefan C., Gary L. Canivez, Marley W. Watkins, and A. Alexander Beaujean. 2015. Exploratory bifactor analysis of the Wechsler Intelligence Scale for Children—Fifth Edition with the 16 primary and secondary subtests. Intelligence 53: 194–201. [Google Scholar] [CrossRef]
- Elliott, Julian G., and Wilma C. Resing. 2015. Can intelligence testing inform educational intervention for children with reading disability? Journal of Intelligence 3: 137–57. [Google Scholar] [CrossRef]
- Fiorello, Catherine A., James B. Hale, James A. Holdnack, Jack A. Kavanagh, Joy Terrell, and Lisa Long. 2007. Interpreting intelligence test results for children with disabilities: Is global intelligence relevant? Applied Neuropsychology 14: 2–51. [Google Scholar] [CrossRef]
- Flanagan, Dawn P., Erin M. McDonough, and Alan S. Kaufman. 2022. Contemporary Intellectual Assessment: Theories, Tests, and Issues. New York: Guilford Publications. Available online: https://books.google.pl/books?id=bqKgEAAAQBAJ (accessed on 12 September 2025).
- Fletcher, Jack M., and Jeremy Miciak. 2024. Assessment of Specific Learning Disabilities and Intellectual Disabilities. Assessment 31: 53–74. [Google Scholar] [CrossRef] [PubMed]
- Foorman, Barbara R., Yaacov Petscher, Christopher Stanley, and Adrea Truckenmiller. 2017. Latent profiles of reading and language and their association with standardized reading outcomes in kindergarten through tenth grade. Journal of Research on Educational Effectiveness 10: 619–45. [Google Scholar] [CrossRef]
- Giofrè, David, Enrico Toffalini, Serena Provazza, Antonio Calcagnì, Gianmarco Altoè, and Daniel J. Roberts. 2019. Are children with developmental dyslexia all the same? A cluster analysis with more than 300 cases. Dyslexia 25: 284–95. [Google Scholar] [CrossRef]
- Gray, Shelley, Annie B. Fox, Samuel Green, Mary Alt, Tiffany P. Hogan, Yaacov Petscher, and Nelson Cowan. 2019. Working memory profiles of children with dyslexia, developmental language disorder, or both. Journal of Speech Language, and Hearing Research 62: 1839–58. [Google Scholar] [CrossRef]
- Hale, James, Vincent Alfonso, V. Berninger, Bruce Bracken, Catherine Christo, Elaine Clark, M. Cohen, Andrew Davis, Scott Decker, and M. Denckla. 2010. Critical issues in response-to-intervention, comprehensive evaluation, and specific learning disabilities identification and intervention: An expert white paper consensus. Learning Disability Quarterly 33: 223–36. [Google Scholar] [CrossRef]
- Hall, Colby, and Sharon Vaughn. 2021. Current Research Informing the Conceptualization, Identification, and Treatment of Dyslexia Across Orthographies: An Introduction to the Special Series. Learning Disability Quarterly 44: 140–44. [Google Scholar] [CrossRef]
- Holopainen, Leena, Nhi Hoang, Arno Koch, and Doris Kofler. 2020. Latent profile analysis of students’ reading development and the relation of cognitive variables to reading profiles. Annals of Dyslexia 70: 94–114. [Google Scholar] [CrossRef]
- Jednoróg, Katarzyna, Natalia Gawron, Artur Marchewka, Stefan Heim, and Anna Grabowska. 2014. Cognitive subtypes of dyslexia are characterized by distinct patterns of grey matter volume. Brain Structure & Function 219: 1697–707. [Google Scholar] [CrossRef]
- Jerman, Olga, and H. Lee Swanson. 2005. Working memory and reading disabilities: A selective meta-analysis of the literature. In Cognition and Learning in Diverse Settings. Edited by Thomas E. Scruggs and Margo A. Mastropieri. Leeds: Emerald Group Publishing Limited, vol. 18. [Google Scholar] [CrossRef]
- Kavale, Kenneth A., and Steven R. Forness. 2000. What definitions of learning disability say and don’t say: A critical analysis. Journal of Learning Disabilities 33: 239–56. [Google Scholar] [CrossRef]
- Kudo, Milagros F., Cathy M. Lussier, and H. Lee Swanson. 2015. Reading disabilities in children: A selective meta-analysis of the cognitive literature. Research in Developmental Disabilities 40: 51–62. [Google Scholar] [CrossRef] [PubMed]
- Kulesz, Paulina A., Garrett. J. Roberts, David J. Francis, Paul Cirino, Martin Walczak, and Sharon Vaughn. 2024. Latent profiles as predictors of response to instruction for students with reading difficulties. Journal of Educational Psychology 116: 363–76. [Google Scholar] [CrossRef] [PubMed]
- Maki, Kathrin E., Johan H. Kranzler, and Mary Elizabeth Moody. 2022. Dual discrepancy/consistency pattern of strengths and weaknesses method of specific learning disability identification: Classification accuracy when combining clinical judgment with assessment data. Journal of School Psychology 92: 33–48. [Google Scholar] [CrossRef] [PubMed]
- Marawi, Tulip, Peter Zhukovsky, Heather Brooks, Christopher R. Bowie, Meryl. A. Butters, Corinne E. Fischer, Alaistair J. Flint, Nathan Herrmann, Krista L. Lanctôt, Linda Mah, and et al. 2024. Heterogeneity of cognition in older adults with remitted major depressive disorder: A latent profile analysis. The American Journal of Geriatric Psychiatry 32: 867–78. [Google Scholar] [CrossRef]
- Mather, Nancy, and Deborah Schneider. 2023. The use of cognitive tests in the assessment of dyslexia. Journal of Intelligence 11: 79. [Google Scholar] [CrossRef]
- McGrew, Kevin S. 2023. Carroll’s Three-Stratum (3S) Cognitive ability theory at 30 Years: Impact, 3S-CHC theory clarification, structural replication, and cognitive-achievement psychometric network analysis extension. Journal of Intelligence 11: 32. [Google Scholar] [CrossRef] [PubMed]
- McGrew, Kevin S., W. Joel Schneider, Scott L. Decker, and Okan Bulut. 2023. A psychometric network analysis of CHC intelligence measures: Implications for research, theory, and interpretation of broad CHC scores “Beyond g”. Journal of Intelligence 11: 19. [Google Scholar] [CrossRef]
- Melby-Lervåg, M., and Charles Hulme. 2013. Is working memory training effective? A meta-analytic review. Developmental Psychology 49: 270–91. [Google Scholar] [CrossRef]
- Melby-Lervåg, Monica, Thomas S. Redick, and Charles Hulme. 2016. Working memory training does not improve performance on measures of intelligence or other measures of “Far Transfer”: Evidence from a meta-analytic review. Perspectives on Psychological Science 11: 512–34. [Google Scholar] [CrossRef]
- Muthen, Linda K., and Bengt Muthen. 2017. Mplus Version 8 User’s Guide. Los Angeles: Muthen & Muthen. Available online: https://books.google.pl/books?id=dgDlAQAACAAJ (accessed on 12 September 2025).
- Muthén, Bengt O. 2002. Beyond SEM: General latent variable modeling. Behaviormetrika 29: 81–117. [Google Scholar] [CrossRef]
- Odegard, Timothy N., Emily A. Farris, and Anna E. Middleton. 2024. Dyslexia in the 21st century: Revisiting the consensus definition. Annals of Dyslexia 74: 273–81. [Google Scholar] [CrossRef]
- Olech, Michal, Pawel Jurek, Bartosz Mikolaj Radtke, Urszula Sajewicz-Radtke, and Łada-Maśko Ariadna. 2024. Intelligence assessment of children & youth benefiting from psychological-educational support system in Poland. Scientific Data 11: 826. [Google Scholar] [CrossRef] [PubMed]
- Ozernov-Palchik, Ola, Elizabeth S. Norton, Georgios Sideridis, Sara D. Beach, Maryanne Wolf, John D. E. Gabrieli, and Nadine Gaab. 2017. Longitudinal stability of pre-reading skill profiles of kindergarten children: Implications for early screening and theories of reading. Developmental Science 20: 10. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, Andre, Alexandra Reis, Susana Araújo, F. Inácio, Karl Magnus Petersson, and Luis Faísca. 2014. Dyslexia heterogeneity: Cognitive profiling of Portuguese children with dyslexia. Reading and Writing: An Interdisciplinary Journal 27: 1529–45. [Google Scholar] [CrossRef]
- Poletti, Michele. 2016. WISC-IV intellectual profiles in Italian children with specific learning disorder and related impairments in reading, written expression, and mathematics. Journal of Learning Disability 49: 320–35. [Google Scholar] [CrossRef]
- Rakesh, Divyangana, Paris Anne Lee, Amruta Gaikwad, and Katie A. McLaughlin. 2025. Annual Research Review: Associations of socioeconomic status with cognitive function, language ability, and academic achievement in youth: A systematic review of mechanisms and protective factors. Journal of Child Psychology and Psychiatry, and Allied Disciplines 66: 417–39. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. 2025. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 12 September 2025).
- Roid, Gale H., Pawel Jurek, Michal Olech, Urszula Sajewicz-Radtke, and Bartosz Mikolaj Radtke. 2017a. Skale Inteligencji Stanford-Binet, Edycja Piąta. Podręcznik techniczny [Stanford-Binet Intelligence Scales, Fifth Edition. Technical Manual]. Gdansk: Pracownia Testów Psychologicznych i Pedagogicznych [Laboratory of Psychological and Educational Tests]. [Google Scholar]
- Roid, Gale H., Urszula Sajewicz-Radtke, Bartosz Mikolaj Radtke, and Malgorzata Lipowska. 2017b. Skale Inteligencji Stanford-Binet. Edycja Piąta [Stanford-Binet Intelligence Scale 5 (SB5)]. Gdansk: Pracownia Testów Psychologicznych i Pedagogicznych [Laboratory of Psychological and Educational Tests]. [Google Scholar]
- Romeo, Rachel R., Tyler K. Perrachione, Halie A. Olson, Kelly K. Halverson, John D. E. Gabrieli, and Joanna A. Christodoulou. 2022. Socioeconomic dissociations in the neural and cognitive bases of reading disorders. Developmental Cognitive Neuroscience 58: 101175. [Google Scholar] [CrossRef]
- Schultz, Edward Karl, Cynthia G. Simpson, and Sharon A. Lynch. 2012. Specific learning disability identification: What constitutes a pattern of strengths and weaknesses. Learning Disabilities: A Multidisciplinary Journal 18: 87–97. [Google Scholar]
- Shaywitz, Sally E., Jack M. Fletcher, John M. Holahan, Abigail E. Shneider, Karen E. Marchione, Karla K. Stuebing, David J. Francis, Kenneth R. Pugh, and Bennett A. Shaywitz. 1999. Persistence of dyslexia: The Connecticut Longitudinal Study at adolescence. Pediatrics 104: 1351–59. [Google Scholar] [CrossRef]
- Stuebing, Karla K., Jack M. Fletcher, Josette M. LeDoux, G. Reid Lyon, Sally E. Shaywitz, and Bennett A. Shaywitz. 2002. Validity of IQ-discrepancy classifications of reading disabilities: A meta-analysis. American Educational Research Journal 39: 469–518. [Google Scholar] [CrossRef]
- Taylor, Ellie K., Gavkhar Abdurokhmonova, and Rachel R. Romeo. 2023. Socioeconomic status and reading development: Moving from “deficit” to “adaptation” in neurobiological models of experience-dependent learning. Mind, Brain and Education 17: 324–33. [Google Scholar] [CrossRef]
- Tippin, Seth Michael. 2007. Stanford-Binet Profile Differences Between Normative Children and Those with Learning Disabilities or ADHD. Ph.D. dissertation, George Fox University, Newberg, OR, USA. Available online: https://digitalcommons.georgefox.edu/psyd/519 (accessed on 12 September 2025).
- Toffalini, Enrico, David Giofrè, and Cesare Cornoldi. 2017. Strengths and weaknesses in the Intellectual profile of different subtypes of specific learning disorder: A study on 1049 diagnosed children. Clinical Psychological Science 5: 402–9. [Google Scholar] [CrossRef]
- Wagner, Richard K., Fotena A. Zirps, Ashley A. Edwards, Sarah G. Wood, Rachel E. Joyner, Betsy J. Becker, Guangyun Liu, and Bethany Beal. 2020. The prevalence of dyslexia: A new approach to its estimation. Journal of Learning Disabilities 53: 354–65. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, David. 2003. Wechsler Intelligence Scale for Children, 4th ed. New York: The Psychological Corporation. [Google Scholar]
- Weller, Bridget E., Natasha K. Bowen, and Sarah J. Faubert. 2020. Latent Class Analysis: A Guide to Best Practice. Journal of Black Psychology 46: 287–311. [Google Scholar] [CrossRef]
- Wilson, Christopher J., Stephen C. Bowden, Linda K. Byrne, Louis-Charles Vannier, Ans Hernandez, and Lawrence G. Weiss. 2023. Cross-national generalizability of WISC-V and CHC broad ability constructs across France, Spain, and the US. Journal of Intelligence 11: 159. [Google Scholar] [CrossRef] [PubMed]
- Wilson, Kimberly, and Linda Gilmore. 2012. Assessing Intellectual Functioning in Young Adolescents: How do the WISC-IV and SB5 Compare? Australian Journal of Guidance and Counselling 22: 1–14. [Google Scholar] [CrossRef]
- Zoubrinetzky, Rachel, Frederique Bielle, and Sylviane Valdoi. 2014. New insights on developmental dyslexia subtypes: Heterogeneity of mixed reading profiles. PLoS ONE 9: e99337. [Google Scholar] [CrossRef]

| Variable | N | % |
|---|---|---|
| Gender | ||
| Female | 1245 | 36 |
| Male | 2213 | 64 |
| Place of Residence | ||
| Countryside | 1007 | 29 |
| City | 2443 | 71 |
| Missing data | 8 | <1 |
| Mother’s Education | ||
| Primary or Lower Secondary | 155 | 5 |
| Vocational | 422 | 12 |
| Secondary | 758 | 22 |
| Graduate and Postgraduate | 1026 | 30 |
| Missing data | 1097 | 31 |
| Father’s Education | ||
| Primary or Lower Secondary | 89 | 3 |
| Vocational | 375 | 11 |
| Secondary | 400 | 12 |
| Graduate and Postgraduate | 340 | 9 |
| Missing data | 2254 | 65 |
| Model | AIC | BIC | Final Class Proportions for the Latent Classes Based on Their Most Likely Latent Class Membership | Entropy | MALCP | REPLIC | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| p1 | p2 | p3 | p4 | p5 | p6 | ||||||
| 2 profiles | 153,984 | 154,451 | .05 | .95 | 0.93 | 0.87 | Yes | ||||
| 3 profiles | 153,892 | 154,428 | .04 | .94 | .02 | 0.92 | 0.79 | Yes | |||
| 4 profiles | 153,816 | 154,418 | .01 | .04 | .03 | .92 | 0.91 | 0.82 | Yes | ||
| 5 profiles | 153,743 | 154,413 | .04 | .01 | .92 | .03 | <.01 | 0.93 | 0.83 | No | |
| 6 profiles | 153,698 | 154,436 | .01 | <.01 | .04 | .89 | .03 | .03 | 0.89 | 0.74 | Yes |
| Variable | Profile 1 | Profile 2 | Profile 1 vs. Profile 2 | Profile 1 vs. Population Norm | Profile 2 vs. Population Norm | |||
|---|---|---|---|---|---|---|---|---|
| M ± SD | M ± SD | t | d | t | d | t | d | |
| Non-verbal | ||||||||
| Fluid Reasoning | 7.85 2.87 | 9.63 2.71 | −7.60 ** | −0.64 | −9.39 ** | −0.75 | −7.90 ** | −0.14 |
| Knowledge | 7.59 2.91 | 9.07 2.78 | −6.22 ** | −0.52 | −10.36 ** | −0.83 | −19.25 ** | −0.34 |
| Quantitative Reasoning | 7.04 2.55 | 9.05 2.76 | −8.98 ** | −0.73 | −13.56 ** | −1.08 | −19.79 ** | −0.34 |
| Visual-Spatial Processing | 8.29 2.55 | 9.38 2.24 | −5.28 ** | −0.46 | −8.43 ** | −0.67 | −15.93 ** | −0.28 |
| Working Memory | 7.93 2.61 | 9.11 2.46 | −5.52 ** | −0.46 | −9.92 ** | −0.79 | −20.86 ** | −0.36 |
| Verbal | ||||||||
| Fluid Reasoning | 7.45 2.81 | 9.12 2.33 | −7.34 ** | −0.65 | −11.39 ** | −0.91 | −21.71 ** | −0.38 |
| Knowledge | 6.99 2.98 | 8.75 2.56 | −7.28 ** | −0.63 | −12.67 ** | −1.01 | −28.11 ** | −0.49 |
| Quantitative Reasoning | 7.25 2.73 | 9.10 2.57 | −8.34 ** | −0.70 | −12.65 ** | −1.01 | −20.14 ** | −0.35 |
| Visual-Spatial Processing | 6.23 2.87 | 8.70 2.59 | −10.57 ** | −0.90 | −16.47 ** | −1.31 | −28.90 ** | −0.50 |
| Working Memory | 2.72 1.23 | 9.39 1.97 | −63.97 ** | −4.06 | −73.91 ** | −5.90 | −17.68 ** | −0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radtke, B.M.; Łada-Maśko, A.; Jurek, P.; Olech, M.; Novita, S.; Sajewicz-Radtke, U. Beyond Global IQ: Identifying Subgroups of Intellectual Functioning in Dyslexia Through Latent Profile Analysis. J. Intell. 2025, 13, 144. https://doi.org/10.3390/jintelligence13110144
Radtke BM, Łada-Maśko A, Jurek P, Olech M, Novita S, Sajewicz-Radtke U. Beyond Global IQ: Identifying Subgroups of Intellectual Functioning in Dyslexia Through Latent Profile Analysis. Journal of Intelligence. 2025; 13(11):144. https://doi.org/10.3390/jintelligence13110144
Chicago/Turabian StyleRadtke, Bartosz M., Ariadna Łada-Maśko, Paweł Jurek, Michał Olech, Shally Novita, and Urszula Sajewicz-Radtke. 2025. "Beyond Global IQ: Identifying Subgroups of Intellectual Functioning in Dyslexia Through Latent Profile Analysis" Journal of Intelligence 13, no. 11: 144. https://doi.org/10.3390/jintelligence13110144
APA StyleRadtke, B. M., Łada-Maśko, A., Jurek, P., Olech, M., Novita, S., & Sajewicz-Radtke, U. (2025). Beyond Global IQ: Identifying Subgroups of Intellectual Functioning in Dyslexia Through Latent Profile Analysis. Journal of Intelligence, 13(11), 144. https://doi.org/10.3390/jintelligence13110144

