Predicting Interfacial Thermal Resistance by Ensemble Learning
Abstract
:1. Introduction
2. Methods
2.1. Dataset Collection
2.2. Dataset Preprocessing
2.2.1. XGBoost
2.2.2. Kernel Ridge Regression
2.2.3. Deep Neural Network
2.2.4. Ensemble Model
2.3. Algorithm Evaluation
3. Results and Discussion
3.1. Descriptor Selection
3.2. Model Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nan, C.W.; Birringer, R.; Clarke, D.R.; Gleiter, H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 1997, 81, 6692–6699. [Google Scholar] [CrossRef]
- Zhong, H.; Lukes, J.R. Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B 2006, 74, 125403. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Desai, T.; Keblinski, P. Determination of interfacial thermal resistance at the nanoscale. Phys. Rev. B 2011, 83, 195423. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.; Lin, H.; Wan, W.; Yang, M.T.; Liu, C. Thermal SPICE modeling of FinFET and BEOL considering frequency-dependent transient response, 3-D heat flow, boundary/alloy scattering, and interfacial thermal resistance. IEEE Trans. Electron. Devices 2019, 66, 2710–2714. [Google Scholar] [CrossRef]
- Clarke, D.R.; Oechsner, M.; Padture, N.P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012, 37, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Drexler, J.M.; Gledhill, A.D.; Shinoda, K.; Vasiliev, A.L.; Reddy, K.M.; Sampath, S.; Padture, N.P. Jet engine coatings for resisting volcanic ash damage. Adv. Mater. 2011, 23, 2419–2424. [Google Scholar] [CrossRef]
- Wu, Y.; Fang, L.; Xu, Y. Predicting interfacial thermal resistance by machine learning. Npj Comput. Mater. 2019, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhan, T.; Fang, L.; Xu, Y. Prediction of thermal boundary resistance by the machine learning method. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shenogin, S.; Xue, L.; Ozisik, R.; Keblinski, P.; Cahill, D.G. Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J. Appl. Phys. 2004, 95, 8136–8144. [Google Scholar] [CrossRef]
- Swartz, E.T.; Pohl, R.O. Thermal resistance at interfaces. Appl. Phys. Lett. 1987, 51, 2200–2202. [Google Scholar] [CrossRef]
- Prasher, R.S.; Phelan, P.E. A scattering-mediated acoustic mismatch model for the prediction of thermal boundary resistance. J. Heat Transf. 2001, 123, 105–112. [Google Scholar] [CrossRef]
- Hu, M.; Shenogin, S.; Keblinski, P. Molecular dynamics simulation of interfacial thermal conductance between silicon and amorphous polyethylene. Appl. Phys. Lett. 2007, 91, 241910. [Google Scholar] [CrossRef]
- Little, W.A. The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 1959, 37, 334–349. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, G. General theories and features of interfacial thermal transport. Chin. Phys. B 2018, 27, 034401. [Google Scholar] [CrossRef] [Green Version]
- Prasher, R. Acoustic mismatch model for thermal contact resistance of van der Waals contacts. App. Phys. Lett. 2009, 94, 041905. [Google Scholar] [CrossRef] [Green Version]
- Reddy, P.; Castelino, K.; Majumdar, A. Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion. Appl. Phys. Lett. 2005, 87, 211908. [Google Scholar] [CrossRef]
- Zhang, J.; Hong, Y.; Liu, M.; Yue, Y.; Xiong, Q.; Lorenzini, G. Molecular dynamics simulation of the interfacial thermal resistance between phosphorene and silicon substrate. Int. J. Heat Mass Transf. 2017, 104, 871–877. [Google Scholar] [CrossRef]
- Liang, G.; Mo, H.; Wang, Z.; Dong, C.; Wang, J. Joint deep recurrent network embedding and edge flow estimation. In Proceedings of the International Conference on Intelligent Computing, Bari, Italy, 2–5 October 2020; pp. 467–475. [Google Scholar]
- Liang, G.; Mo, H.; Qiao, Y.; Wang, C.; Wang, J. Paying deep attention to both neighbors and multiple tasks. In Proceedings of the International Conference on Intelligent Computing, Bari, Italy, 2–5 October 2020; pp. 140–149. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Schölkopf, B.; Smola, A.; Müller, K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10, 1299–1319. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Kim, S. SVM tutorial-classification, regression and ranking. Handb. Nat. Comput. 2012, 1, 479–506. [Google Scholar]
- Zhang, Y.; Duchi, J.; Wainwright, M. Divide and conquer kernel ridge regression. In Proceedings of the Conference on Learning Theory, Princeton, NJ, USA, 12–14 June 2013; pp. 592–617. [Google Scholar]
- An, S.; Liu, W.; Venkatesh, S. Face recognition using kernel ridge regression. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–7. [Google Scholar]
- Deng, L.; Hinton, G.; Kingsbury, B. New types of deep neural network learning for speech recognition and related applications: An overview. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 8599–8603. [Google Scholar]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal. Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Ciregan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3642–3649. [Google Scholar]
- Jiang, Y.; Wu, Z.; Wang, J.; Xue, X.; Chang, S. Exploiting feature and class relationships in video categorization with regularized deep neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Santurkar, S.; Tsipras, D.; Ilyas, A.; Madry, A. How does batch normalization help optimization? arXiv 2018, arXiv:1805.11604. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2. [Google Scholar]
- Nagelkerke, N.J.D. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Armstrong, J.S.; Collopy, F. Error measures for generalizing about forecasting methods: Empirical comparisons. Int. J. Forecast. 1992, 8, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Morgenthaler, S. Exploratory data analysis. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 33–44. [Google Scholar] [CrossRef]
- Cui, Y.; Li, M.; Hu, Y. Emerging interface materials for electronics thermal management: Experiments, modeling, and new opportunities. J. Mater. Chem. C 2020, 8, 10568–10586. [Google Scholar] [CrossRef]
- Adam, S.P.; Alexandropoulos, S.A.N.; Pardalos, P.M.; Vrahatis, M.N. No free lunch theorem: A review. Approx. Optim. 2019, 57–82. [Google Scholar]
- Polikar, R. Ensemble learning. In Ensemble Machine Learning; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–34. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Schapire, R.E. A brief introduction to boosting. In Proceedings of the IJCAI, Stockholm, Sweden, 31 July–6 August 1999; pp. 1401–1406. [Google Scholar]
- Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. Bayesian model averaging: A tutorial. Stat. Sci. 1999, 382–401. [Google Scholar]
- Monteith, K.; Carroll, J.L.; Seppi, K.; Martinez, T. Turning Bayesian model averaging into Bayesian model combination. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 2657–2663. [Google Scholar]
- Džeroski, S.; Ženko, B. Is combining classifiers with stacking better than selecting the best one? Mach. Learn. 2004, 54, 255–273. [Google Scholar] [CrossRef] [Green Version]
- Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Dietterich, T.G. Ensemble methods in machine learning. In Proceedings of the International Workshop on Multiple Classifier Systems, Cagliari, Italy, 21–23 June 2000; pp. 1–15. [Google Scholar]
- Lyeo, H.; Cahill, D.G. Thermal conductance of interfaces between highly dissimilar materials. Phys. Rev. B 2006, 73, 144301. [Google Scholar] [CrossRef]
- von Huth, P.; Butler, J.E.; Tenne, R. Diamond/CdTe: A new inverted heterojunction CdTe thin film solar cell. Sol. Energy Mater. Sol. Cells 2001, 69, 381–388. [Google Scholar] [CrossRef]
Models | Advantage | Disadvantage | Reference |
---|---|---|---|
Acoustic mismatch model (AMM) | Suitable for interfaces at low temperatures | Not suitable for interfaces where phonon scattering matters | [15] |
Diffuse mismatch model (DMM) | Suitable for interfaces with characteristic roughness at elevated temperatures | Not suitable for interfaces at moderate and above cryogenic temperatures | [16] |
Scattering-mediated acoustic mismatch model (SMAMM) | Suitable for interfaces in a wide temperature range | Prediction accuracy restricted by Debye approximation | [11] |
Molecular dynamics simulation (MD) | Works well at a certain level of accuracy | Computationally expensive and time-consuming | [17] |
Machine learning models | Suitable for various interfaces, computationally efficient | Requires a large amount of experimental data to train reliable models | This work |
Model | R | RMSE | ||
---|---|---|---|---|
All Descriptors | Selected Descriptors | All Descriptors | Selected Descriptors | |
XGB | 0.88 | 0.87 | 9.44 | 10.00 |
KRR | 0.87 | 0.86 | 9.98 | 10.25 |
DNN | 0.84 | 0.84 | 10.30 | 10.04 |
Ensemble | N/A | 0.87 | N/A | 9.34 |
High Melting Point, High ITR Material Systems | Predicted ITR by Ensemble Model (10−9 m2K/W) | High Melting Point, High ITR Material Systems | Predicted ITR by Ensemble Model (10−9 m2K/W) |
---|---|---|---|
PtS/Diamond | 50.42 | CuS/Diamond | 43.23 |
PtS/Graphene | 48.97 | CdTe/Graphene | 42.81 |
PtS/Graphite | 48.48 | CdTe/Graphite | 42.64 |
PdTe/Diamond | 47.15 | SnO/Diamond | 42.37 |
ZnS/Diamond | 46.96 | KF/Diamond | 42.17 |
PtTe/Diamond | 45.02 | FeSe2/GaAs | 42.10 |
PbO/Diamond | 44.98 | AgCl/GaP | 41.71 |
LiCl/Diamond | 44.56 | CuBr/GaAs | 41.69 |
ZnS/Graphene | 44.41 | CuBr/InP | 41.57 |
PtTe/Graphene | 44.15 | CuBr/GaP | 41.48 |
ZnS/Graphite | 44.06 | AgCl/Al2O3 | 41.36 |
PtTe/Graphite | 44.03 | FeSe2/InP | 41.34 |
PdTe/Graphene | 43.81 | MnTe/Ga2O3 | 41.26 |
CdTe/Diamond | 43.48 | MnTe/InP | 41.10 |
PdTe/Graphite | 43.48 | Pb/Diamond | 41.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Li, J.; Tian, B.; Al-Hadeethi, Y.M.; Arkook, B.; Tian, X.; Zhang, X. Predicting Interfacial Thermal Resistance by Ensemble Learning. Computation 2021, 9, 87. https://doi.org/10.3390/computation9080087
Chen M, Li J, Tian B, Al-Hadeethi YM, Arkook B, Tian X, Zhang X. Predicting Interfacial Thermal Resistance by Ensemble Learning. Computation. 2021; 9(8):87. https://doi.org/10.3390/computation9080087
Chicago/Turabian StyleChen, Mingguang, Junzhu Li, Bo Tian, Yas Mohammed Al-Hadeethi, Bassim Arkook, Xiaojuan Tian, and Xixiang Zhang. 2021. "Predicting Interfacial Thermal Resistance by Ensemble Learning" Computation 9, no. 8: 87. https://doi.org/10.3390/computation9080087
APA StyleChen, M., Li, J., Tian, B., Al-Hadeethi, Y. M., Arkook, B., Tian, X., & Zhang, X. (2021). Predicting Interfacial Thermal Resistance by Ensemble Learning. Computation, 9(8), 87. https://doi.org/10.3390/computation9080087