More on the Supremum Statistic to Test Multivariate Skew-Normality
Abstract
:1. Introduction
1.1. Canonical Form of a Multivariate Skew-Normal Variable
2. Hypothesis Test
Balakrishnan et al.’s (2014) Supremum Test
3. Monte Carlo Simulation Studies
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The R Code
References
- Balakrishnan, N.; Capitanio, A.; Scarpa, B. A test for multivariate skew-normality based on its canonical form. J. Multivar. Anal. 2014, 128, 19–32. [Google Scholar] [CrossRef]
- Anderson, T.W. Introduction to Multivariate Statistical Analysis; Wiley & Sons: Hoboken, NJ, USA, 1958. [Google Scholar]
- Rao, C.R. Linear Statistical Inference and Its Applications; Wiley: New York, NY, USA, 1965. [Google Scholar]
- Mardia, K.V.; Kent, J.T.; Bibby, J.M. Multivariate Analysis; Academic Press Inc.: New York, NY, USA, 1979. [Google Scholar]
- Muirhead, R.J. Aspects of Multivariate Statistical Theory; Wiley-InterScience: Hoboken, NJ, USA, 1982. [Google Scholar]
- Seber, G.A.E. Multivariate Observations; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Jensen, D.R. Multivariate distributions. In Encyclopedia of Statistical Sciences; Kotz, S., Johnson, N.L., Read, C.B., Eds.; Wiley: Hoboken, NJ, USA, 1985; Volume 6, pp. 43–55. [Google Scholar]
- Geary, R.C. Testing for normality. Biometrika 1947, 34, 209–242. [Google Scholar] [CrossRef] [Green Version]
- Azzalini, A. A class of distributions which includes the normal ones. Scand. J. Statist. 1985, 12, 171–178. [Google Scholar]
- Azzalini, A.; Dalla Valle, A. The multivariate skew-normal distribution. Biometrika 1996, 83, 715–726. [Google Scholar] [CrossRef]
- Kollo, T. From normality to skewed multivariate distributions: A personal view. In Multivariate, Multilinear and Mixed Linear Models; Filipiak, K., Markiewicz, A., von Rosen, D., Eds.; Contributions to Statistics; Springer: Cham, Switzerland, 2021; pp. 17–40. [Google Scholar] [CrossRef]
- Capitanio, A. On the Canonical Form of Scale Mixtures of Skew-Normal Distributions. arXiv 2012, arXiv:1207.0797. [Google Scholar]
- Meintanis, S.; Hlavka, Z. Goodness-of-fit tests for bivariate and multivariate skew-normal distributions. Scand. J. Stat. 2010, 37, 701–714. [Google Scholar] [CrossRef]
- Azzalini, A. Further results on a class of distributions which includes the normal ones. Statistica 1986, 46, 199–208. [Google Scholar]
- Mardia, K.V. Measures of multivariate skewness and kurtosis with applications. Biometrika 1970, 57, 519–530. [Google Scholar] [CrossRef]
- Mardia, K.V. Applications of some measures of multivariate skewness and kurtosis intesting normality and robustness studies. Sankhya 1974, 36, 115–128. [Google Scholar]
- Rizzo, M.L. Statistical Computing with R, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2019. [Google Scholar]
- Opheim, T.; Roy, A. Score tests for intercept and slope parameters of doubly multivariate linear models with skew-normal errors. J. Stat. Theory Pract. 2021, 15, 30. [Google Scholar] [CrossRef]
Sample Size n | ESL for α = 0.05 | 95% CI for ESL α = 0.05 | ESL for α = 0.01 | 95% CI for ESL α = 0.01 |
---|---|---|---|---|
7 | 0.192 | (0.189, 0.195) | 0.046 | (0.044, 0.048) |
8 | 0.179 | (0.175, 0.182) | 0.040 | (0.039, 0.042) |
9 | 0.165 | (0.161, 0.168) | 0.037 | (0.035, 0.038) |
10 | 0.158 | (0.154, 0.161) | 0.034 | (0.033, 0.036) |
15 | 0.118 | (0.115, 0.121) | 0.026 | (0.025, 0.028) |
20 | 0.097 | (0.094, 0.099) | 0.021 | (0.020, 0.022) |
30 | 0.072 | (0.070, 0.074) | 0.014 | (0.013, 0.016) |
35 | 0.064 | (0.062, 0.066) | 0.013 | (0.012, 0.014) |
40 | 0.059 | (0.057, 0.061) | 0.011 | (0.011, 0.012) |
45 | 0.057 | (0.055, 0.059) | 0.011 | (0.010, 0.011) |
50 | 0.053 | (0.051, 0.055) | 0.011 | (0.010, 0.012) |
55 | 0.052 | (0.050, 0.054) | 0.011 | (0.010, 0.012) |
60 | 0.050 | (0.048, 0.052) | 0.010 | (0.009, 0.011) |
65 | 0.051 | (0.049, 0.053) | 0.010 | (0.009, 0.010) |
70 | 0.052 | (0.050, 0.054) | 0.010 | (0.009, 0.011) |
75 | 0.051 | (0.049, 0.053) | 0.010 | (0.009, 0.011) |
100 | 0.050 | (0.048, 0.052) | 0.010 | (0.009, 0.011) |
150 | 0.050 | (0.048, 0.052) | 0.010 | (0.009, 0.011) |
200 | 0.051 | (0.049, 0.053) | 0.010 | (0.009, 0.011) |
300 | 0.051 | (0.049, 0.053) | 0.010 | (0.009, 0.011) |
Sample Size | α = 0.05 | α = 0.01 | ||||
---|---|---|---|---|---|---|
n | ESL | 95% CI for ESL | ECV | ESL | 95% CI for ESL | ECV |
6 | 0.171 | (0.168, 0.174) | 193 | 0.036 | (0.035, 0.038) | 981 |
7 | 0.156 | (0.153, 0.159) | 225 | 0.034 | (0.032, 0.035) | 1145 |
8 | 0.145 | (0.142, 0.149) | 257 | 0.030 | (0.029, 0.032) | 1308 |
9 | 0.141 | (0.138, 0.144) | 289 | 0.029 | (0.027, 0.030) | 1472 |
10 | 0.133 | (0.130, 0.136) | 321 | 0.028 | (0.027, 0.029) | 1635 |
20 | 0.096 | (0.094, 0.099) | 641 | 0.018 | (0.017, 0.020) | 3270 |
30 | 0.078 | (0.076, 0.080) | 962 | 0.016 | (0.015, 0.017) | 4904 |
40 | 0.069 | (0.067, 0.071) | 1282 | 0.014 | (0.013, 0.015) | 6538 |
50 | 0.061 | (0.060, 0.064) | 1602 | 0.012 | (0.011, 0.013) | 8173 |
55 | 0.056 | (0.054, 0.058) | 1762 | 0.012 | (0.011, 0.013) | 8990 |
60 | 0.056 | (0.054, 0.058) | 1922 | 0.011 | (0.010, 0.012) | 9807 |
65 | 0.054 | (0.052, 0.056) | 2082 | 0.010 | (0.010, 0.011) | 10,625 |
70 | 0.053 | (0.051, 0.055) | 2243 | 0.011 | (0.010, 0.012) | 11,442 |
75 | 0.052 | (0.050, 0.054) | 2403 | 0.010 | (0.009, 0.011) | 12,258 |
80 | 0.052 | (0.050, 0.054) | 2563 | 0.011 | (0.010, 0.012) | 13,076 |
100 | 0.050 | (0.048, 0.052) | 3203 | 0.010 | (0.010, 0.011) | 16,345 |
150 | 0.049 | (0.047, 0.050) | 4805 | 0.010 | (0.009, 0.011) | 24,518 |
200 | 0.050 | (0.049, 0.052) | 6406 | 0.010 | (0.009, 0.011) | 32,690 |
300 | 0.051 | (0.049, 0.053) | 9608 | 0.010 | (0.009, 0.011) | 49,034 |
Sample Size | α = 0.05 | α = 0.01 | ||||
---|---|---|---|---|---|---|
n | ESL | 95% CI for ESL | ECV | ESL | 95% CI for ESL | ECV |
9 | 0.141 | (0.138, 0.145) | 380 | 0.028 | (0.026, 0.029) | 1933 |
10 | 0.138 | (0.135, 0.141) | 422 | 0.029 | (0.028, 0.031) | 2148 |
20 | 0.113 | (0.110, 0.116) | 842 | 0.023 | (0.021, 0.024) | 4295 |
30 | 0.097 | (0.094, 0.099) | 1263 | 0.020 | (0.019, 0.021) | 6442 |
40 | 0.082 | (0.080, 0.085) | 1684 | 0.017 | (0.016, 0.018) | 8589 |
50 | 0.076 | (0.074, 0.079) | 2104 | 0.015 | (0.014, 0.016) | 10,736 |
60 | 0.067 | (0.065, 0.069) | 2525 | 0.014 | (0.013, 0.015) | 12,882 |
70 | 0.064 | (0.062, 0.067) | 2946 | 0.013 | (0.012, 0.014) | 15,029 |
75 | 0.062 | (0.060, 0.065) | 3156 | 0.012 | (0.011, 0.013) | 16,103 |
80 | 0.060 | (0.058, 0.062) | 3366 | 0.011 | (0.011, 0.012) | 17,176 |
85 | 0.058 | (0.056, 0.060) | 3577 | 0.011 | (0.010, 0.012) | 18,250 |
90 | 0.057 | (0.055, 0.059) | 3787 | 0.011 | (0.010, 0.012) | 19,323 |
95 | 0.057 | (0.055, 0.059) | 3997 | 0.011 | (0.010, 0.012) | 20,397 |
100 | 0.054 | (0.052, 0.056) | 4208 | 0.011 | (0.010, 0.012) | 21,471 |
105 | 0.055 | (0.053, 0.057) | 4418 | 0.011 | (0.010, 0.012) | 22,543 |
110 | 0.053 | (0.051, 0.055) | 4628 | 0.010 | (0.010, 0.012) | 23,617 |
115 | 0.054 | (0.052, 0.056) | 4839 | 0.010 | (0.010, 0.011) | 24,691 |
120 | 0.051 | (0.049, 0.053) | 5049 | 0.010 | (0.010, 0.011) | 25,765 |
125 | 0.051 | (0.049, 0.053) | 5259 | 0.011 | (0.010, 0.012) | 26,838 |
130 | 0.049 | (0.047, 0.051) | 5470 | 0.010 | (0.010, 0.011) | 27,912 |
135 | 0.052 | (0.050, 0.054) | 5680 | 0.011 | (0.010, 0.011) | 28,985 |
140 | 0.052 | (0.050, 0.054) | 5890 | 0.010 | (0.010, 0.011) | 30,058 |
145 | 0.050 | (0.048, 0.052) | 6101 | 0.010 | (0.010, 0.011) | 31,132 |
150 | 0.050 | (0.048, 0.052) | 6311 | 0.011 | (0.010, 0.012) | 32,206 |
200 | 0.051 | (0.049, 0.053) | 8415 | 0.011 | (0.010, 0.011) | 42,940 |
300 | 0.050 | (0.048, 0.052) | 12,621 | 0.011 | (0.010,0.011) | 64,409 |
Sample Size | α = 0.05 | α = 0.01 | ||||
---|---|---|---|---|---|---|
n | ESL | 95% CI for ESL | ECV | ESL | 95% CI for ESL | ECV |
11 | 0.133 | (0.130, 0.136) | 509 | 0.027 | (0.026, 0.029) | 2595 |
12 | 0.133 | (0.130, 0.136) | 556 | 0.027 | (0.025, 0.028) | 2831 |
13 | 0.131 | (0.128, 0.134) | 602 | 0.026 | (0.025, 0.028) | 3066 |
14 | 0.133 | (0.130, 0.136) | 648 | 0.028 | (0.027, 0.029) | 3302 |
15 | 0.133 | (0.130, 0.136) | 694 | 0.027 | (0.026, 0.029) | 3538 |
20 | 0.125 | (0.122, 0.128) | 925 | 0.025 | (0.024, 0.027) | 4717 |
30 | 0.105 | (0.102, 0.108) | 1387 | 0.023 | (0.021, 0.024) | 7075 |
40 | 0.093 | (0.090, 0.095) | 1849 | 0.019 | (0.018, 0.020) | 9433 |
50 | 0.086 | (0.083, 0.088) | 2311 | 0.018 | (0.017, 0.019) | 11,791 |
60 | 0.078 | (0.076, 0.081) | 2773 | 0.016 | (0.015, 0.017) | 14,148 |
70 | 0.075 | (0.073, 0.078) | 3235 | 0.014 | (0.013, 0.015) | 16,506 |
80 | 0.070 | (0.068, 0.073) | 3697 | 0.014 | (0.013, 0.015) | 18,864 |
90 | 0.065 | (0.063, 0.067) | 4159 | 0.012 | (0.011, 0.013) | 21,222 |
100 | 0.062 | (0.059, 0.064) | 4621 | 0.012 | (0.011, 0.013) | 23,580 |
110 | 0.057 | (0.055, 0.059) | 5083 | 0.012 | (0.011, 0.013) | 25,938 |
115 | 0.057 | (0.055, 0.059) | 5314 | 0.012 | (0.011, 0.013) | 27,117 |
120 | 0.056 | (0.054, 0.058) | 5545 | 0.011 | (0.011, 0.012) | 28,296 |
125 | 0.054 | (0.052, 0.056) | 5776 | 0.010 | (0.010, 0.011) | 29,474 |
130 | 0.055 | (0.053, 0.057) | 6007 | 0.011 | (0.010, 0.012) | 30,654 |
135 | 0.052 | (0.050, 0.054) | 6238 | 0.011 | (0.010, 0.012) | 31,832 |
140 | 0.051 | (0.049, 0.053) | 6469 | 0.011 | (0.010, 0.012) | 33,011 |
145 | 0.051 | (0.049, 0.051) | 6700 | 0.010 | (0.009, 0.011) | 34,190 |
150 | 0.051 | (0.049, 0.053) | 6931 | 0.009 | (0.009, 0.010) | 35,369 |
200 | 0.049 | (0.047, 0.051) | 9241 | 0.010 | (0.009, 0.011) | 47,158 |
300 | 0.051 | (0.049, 0.052) | 13,861 | 0.010 | (0.009, 0.011) | 70,737 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opheim, T.; Roy, A. More on the Supremum Statistic to Test Multivariate Skew-Normality. Computation 2021, 9, 126. https://doi.org/10.3390/computation9120126
Opheim T, Roy A. More on the Supremum Statistic to Test Multivariate Skew-Normality. Computation. 2021; 9(12):126. https://doi.org/10.3390/computation9120126
Chicago/Turabian StyleOpheim, Timothy, and Anuradha Roy. 2021. "More on the Supremum Statistic to Test Multivariate Skew-Normality" Computation 9, no. 12: 126. https://doi.org/10.3390/computation9120126
APA StyleOpheim, T., & Roy, A. (2021). More on the Supremum Statistic to Test Multivariate Skew-Normality. Computation, 9(12), 126. https://doi.org/10.3390/computation9120126