P System–Based Clustering Methods Using NoSQL Databases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clustering Algorithms
2.2. Membrane Systems
- V is a finite alphabet of objects;
- is the output alphabet;
- is catalyst;
- is a membrane structure, containing the n membranes;
- are strings representing multisets over V associated with regions of ;
- is a finite set of evolution rules associated with region i for all i;
- is a partial order relation over
- , , ;
- ;
- , , ;
- , , ;
- , , ;
2.3. Membrane Clustering
2.4. NoSQL
2.5. The Used Algorithm
- O is a finite, non-empty alphabet of objects;
- μ describes the (graph) structure, containing the p nested cells;
- is a finite multiset of objects over O, contained by cell i of μ in the initial state of the calculation;
- is a finite set of evolutionary rules contained by cell i of μ;
- is finite set of communicational rules between the cells of μ; and finally
- specifies the cell accommodating the output of the computation (if , the region outside the outer cell contains the output).
BEGIN Initialize cells and best positions WHILE step < tmax DO FOR each cell DO FOR each object DO CALL update_best_position() END END FOR each cell DO IF best in cell < global best THEN Update global best END END Increase step END RETURN global best positions END FUNCTION update_best_position() BEGIN Calculate w using Equation~(2) Evolve object using Equation~(1) Calculate partition matrix using Equation~(4) Calculate FCM using Equation~(3) IF FCM for given object < best so far THEN Update best position for object END END
3. Results
3.1. Experiments
{“d1”: 5.68, “d2”: 0.35, “d3”: 3.12, …} {“d1”: −0.83, “d2”: 3.67, “d3”: 1.12, …} {“d1”: −6.48, “d2”: −7.1, “d3”: 4.89, …} …
collection1:point1 5.68 0.35 3.12 … collection1:point2 −0.83 3.67 1.12 … collection1:point3 −6.48 −7.1 4.89 … …
3.2. Evaluation
4. Discussion and Conclusions
4.1. Conclusions
4.2. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SA | Simulated Annealing |
GA | Genetic Algorithm |
ABC | Artificial Bee Colony |
DE | Differential Evolution |
PSO | Particle Swarm Optimization |
RFO | Red Fox Optimization |
PBO | Polar Bear Optimization |
ChOA | Chimp Optimization Algorithm |
CUDA | Compute Unified Device Architecture |
MAQIS | Membrane Algorithm with Quantum-Inspired Subalgorithms |
FPGA | Field Programmable Gate Arrays |
PDP | Programmed Data Processor |
MeCoSim | Membrane Computing Simulator |
SNP | Spiking Neural P Systems |
SNMC | Spiking Neural Membrane Computing |
SAT problem | Boolean Satisfiability Problem |
KMCA | Kernel-based Membrane Clustering Algorithm |
PSO-CP | Particle Swarm Optimization Cell-like P system |
FCM | Fuzzy C-Means |
RSS | Resident Set Size |
UCI | University of California, Irvine |
References
- Păun, G. Computing with Membranes. J. Comput. Syst. Sci. 2000, 61, 108–143. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Manoharan, S. A performance comparison of SQL and NoSQL databases. In Proceedings of the 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Vancouver, BC, Canada, 27–29 August 2013; pp. 15–19. [Google Scholar]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 1 January 1967; Volume 1, pp. 281–297. [Google Scholar]
- Hamerly, G.; Elkan, C. Learning the k in k-means. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA; London, UK, 2004; pp. 281–288. [Google Scholar]
- Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Merwe, D.W.; Engelbrecht, A.P. Data clustering using particle swarm optimization. In Proceedings of the 2003 Congress on Evolutionary Computation (CEC ’03), Canberra, ACT, Australia, 8–12 December 2003; Volume 1, pp. 215–220. [Google Scholar] [CrossRef]
- Karaboga, D.; Ozturk, C. A novel clustering approach: Artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2010, 11, 652–657. [Google Scholar] [CrossRef]
- Das, S.; Abraham, A.; Konar, A. Automatic clustering using an improved differential evolution algorithm. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2007, 38, 218–237. [Google Scholar] [CrossRef]
- Połap, D. Polar bear optimization algorithm: Meta-heuristic with fast population movement and dynamic birth and death mechanism. Symmetry 2017, 9, 203. [Google Scholar] [CrossRef] [Green Version]
- Połap, D.; Woźniak, M. Red fox optimization algorithm. Expert Syst. Appl. 2021, 166, 114107. [Google Scholar] [CrossRef]
- Khishe, M.; Mosavi, M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020, 149, 113338. [Google Scholar] [CrossRef]
- Păun, G. Membrane Computing—An Introduction; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Păun, G.; Rozenberg, G. A guide to membrane computing. Theor. Comput. Sci. 2002, 287, 73–100. [Google Scholar] [CrossRef] [Green Version]
- Csuhaj-Varjú, E. Communicating P Systems: Bio-inspired Computational Models for Complex Systems. In Proceedings of the CEUR Workshop Proceedings, Oravská Lesná, Slovakia, 18–22 September 2020; pp. 3–8. [Google Scholar]
- Díaz-Pernil, D.; Berciano, A.; PeñA-Cantillana, F.; GutiéRrez-Naranjo, M.A. Segmenting images with gradient-based edge detection using membrane computing. Pattern Recognit. Lett. 2013, 34, 846–855. [Google Scholar] [CrossRef]
- Zhang, G.; Gheorghe, M.; Li, Y. A membrane algorithm with quantum-inspired subalgorithms and its application to image processing. Nat. Comput. 2012, 11, 701–717. [Google Scholar] [CrossRef]
- Zhang, G.; Shang, Z.; Verlan, S.; Martínez-del Amor, M.Á.; Yuan, C.; Valencia-Cabrera, L.; Pérez-Jiménez, M.J. An overview of hardware implementation of membrane computing models. ACM Comput. Surv. (CSUR) 2020, 53, 1–38. [Google Scholar] [CrossRef]
- Sánchez Karhunen, E.; Valencia Cabrera, L. Membrane Computing Applications in Computational Economics. In Proceedings of the BWMC 2017: 15th Brainstorming Week on Membrane Computing, Andalusia, Spain, 31 January–3 February 2017; pp. 189–214. [Google Scholar]
- Liu, X.; Ren, Q. Spiking Neural Membrane Computing Models. Processes 2021, 9, 733. [Google Scholar] [CrossRef]
- Martínez-del Amor, M.Á.; Orellana-Martín, D.; Pérez-Hurtado, I.; Cabarle, F.G.C.; Adorna, H.N. Simulation of Spiking Neural P Systems with Sparse Matrix-Vector Operations. Processes 2021, 9, 690. [Google Scholar] [CrossRef]
- Hao, L.; Liu, J. Enhanced Membrane Computing Algorithm for SAT Problems Based on the Splitting Rule. Symmetry 2019, 11, 1412. [Google Scholar] [CrossRef] [Green Version]
- Csuhaj-Varjú, E.; Margenstern, M.; Vaszil, G.; Verlan, S. On small universal antiport P systems. Theor. Comput. Sci. 2007, 372, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Battyányi, P.; Vaszil, G. Description of membrane systems with time Petri nets: Promoters/inhibitors, membrane dissolution, and priorities. J. Membr. Comput. 2020, 2, 341–354. [Google Scholar] [CrossRef]
- Csuhaj-Varjú, E.; Vaszil, G. P automata or purely communicating accepting P systems. In Workshop on Membrane Computing; Springer: Berlin/Heidelberg, Germany, 2002; pp. 219–233. [Google Scholar]
- Csuhaj-Varjú, E.; Nola, A.D.; Păun, G.; Pérez-Jiménez, M.J.; Vaszil, G. Editing configurations of P systems. Fundam. Inform. 2008, 82, 29–46. [Google Scholar]
- Ciencialová, L.; Cienciala, L.; Csuhaj-Varjú, E. P colonies and reaction systems. J. Membr. Comput. 2020, 2, 269–280. [Google Scholar] [CrossRef]
- Bie, D.; Gutiérrez-Naranjo, M.A.; Zhao, J.; Zhu, Y. A membrane computing framework for self-reconfigurable robots. Nat. Comput. 2019, 18, 635–646. [Google Scholar] [CrossRef]
- Muniyandi, R.C.; Maroosi, A. A Representation of Membrane Computing with a Clustering Algorithm on the Graphical Processing Unit. Processes 2020, 8, 1199. [Google Scholar] [CrossRef]
- José-García, A.; Gómez-Flores, W. Automatic clustering using nature-inspired metaheuristics: A survey. Appl. Soft Comput. 2016, 41, 192–213. [Google Scholar] [CrossRef]
- Peng, H.; Shi, P.; Wang, J.; Riscos-Núñez, A.; Pérez-Jiménez, M. Multiobjective fuzzy clustering approach based on tissue-like membrane systems. Knowl.-Based Syst. 2017, 125. [Google Scholar] [CrossRef]
- Yang, J.; Chen, R.; Zhang, G.; Peng, H.; Wang, J.; Riscos-Núñez, A. A. A kernel-based membrane clustering algorithm. In Enjoying Natural Computing; Springer: Berlin/Heidelberg, Germany, 2018; pp. 318–329. [Google Scholar]
- Wang, L.; Liu, X.; Sun, M.; Qu, J. An Extended clustering membrane system based on particle swarm optimization and cell-like P system with active membranes. Math. Probl. Eng. 2020, 2020, 5097589. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J. Particle Swarm Optimization. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2010. [Google Scholar] [CrossRef]
- Jiang, Y.; Peng, H.; Huang, X.; Zhang, J.; Shi, P. A novel clustering algorithm based on P systems. Int. J. Innov. Comput. Inf. Control. IJICIC 2014, 10, 753–765. [Google Scholar]
- Peng, H.; Wang, J.; Shi, P.; Riscos-Núñez, A.; Pérez-Jiménez, M.J. An automatic clustering algorithm inspired by membrane computing. Pattern Recognit. Lett. 2015, 68, 34–40. [Google Scholar] [CrossRef]
- Macedo, T.; Oliveira, F. Redis Cookbook: Practical Techniques for Fast Data Manipulation; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2011. [Google Scholar]
- Plugge, E.; Hows, D.; Membrey, P.; Hawkins, T. The Definitive Guide to MongoDB: A Complete Guide to Dealing with Big Data Using MongoDB; Apress: New York, NY, USA, 2015. [Google Scholar]
- Punia, Y.; Aggarwal, R. Implementing Information System Using MongoDB and Redis. Int. J. Adv. Trends Comput. Sci. Eng. 2014, 3, 16–20. [Google Scholar]
- Abramova, V.; Bernardino, J.; Furtado, P. Experimental evaluation of NoSQL databases. Int. J. Database Manag. Syst. 2014, 6, 1. [Google Scholar] [CrossRef]
- Gessert, F.; Wingerath, W.; Friedrich, S.; Ritter, N. NoSQL database systems: A survey and decision guidance. Comput. Sci.-Res. Dev. 2017, 32, 353–365. [Google Scholar] [CrossRef]
- Gupta, A.; Tyagi, S.; Panwar, N.; Sachdeva, S.; Saxena, U. NoSQL databases: Critical analysis and comparison. In Proceedings of the IEEE 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN), Gurgaon, India, 12–14 October 2017; pp. 293–299. [Google Scholar]
- Indrawan-Santiago, M. Database research: Are we at a crossroad? Reflection on NoSQL. In Proceedings of the IEEE 2012 15th International Conference on Network-Based Information Systems, Melbourne, VIC, Australia, 26–28 September 2012; pp. 45–51. [Google Scholar]
- Armstrong, T.G.; Ponnekanti, V.; Borthakur, D.; Callaghan, M. LinkBench: A database benchmark based on the Facebook social graph. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 22–27 June 2013; pp. 1185–1196. [Google Scholar]
- Tarczali, T.; Lehotay-Kéry, P.; Kiss, A. Membrane Clustering Using the PostgreSQL Database Management System. In Proceedings of the SAI Intelligent Systems Conference; Springer: Berlin/Heidelberg, Germany, 2020; pp. 377–388. [Google Scholar]
- Dua, D.; Graff, C. UCI Machine Learning Repository. Available online: http://archive.ics.uci.edu/ml (accessed on 27 July 2021).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehotay-Kéry, P.; Tarczali, T.; Kiss, A. P System–Based Clustering Methods Using NoSQL Databases. Computation 2021, 9, 102. https://doi.org/10.3390/computation9100102
Lehotay-Kéry P, Tarczali T, Kiss A. P System–Based Clustering Methods Using NoSQL Databases. Computation. 2021; 9(10):102. https://doi.org/10.3390/computation9100102
Chicago/Turabian StyleLehotay-Kéry, Péter, Tamás Tarczali, and Attila Kiss. 2021. "P System–Based Clustering Methods Using NoSQL Databases" Computation 9, no. 10: 102. https://doi.org/10.3390/computation9100102
APA StyleLehotay-Kéry, P., Tarczali, T., & Kiss, A. (2021). P System–Based Clustering Methods Using NoSQL Databases. Computation, 9(10), 102. https://doi.org/10.3390/computation9100102