DFT Study of Si/Al Ratio and Confinement Effects on the Energetics and Vibrational Properties of some Aza-Aromatic Molecules Adsorbed on H-ZSM-5 Zeolite
Abstract
:1. Introduction
2. Theoretical Calculations
3. Results and Discussion
3.1. Structure and Energetic Analysis
3.2. Vibrational Frequencies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhattacharyya, K.G.; Talukdar, A.K. Catalysis in Petroleum and Petrochemical Industries; Narosa Publishing House: New Dehli, India, 2005. [Google Scholar]
- Auerbach, S.M.; Carrado, K.A.; Dutta, P.K. Handbook of Zeolite Science and Technology; Marcel-Dekker: New York, NY, USA, 2003. [Google Scholar]
- Chen, Y.H. Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts; Springer: New York, NY, USA, 2014. [Google Scholar]
- Martinez, C.; Corma, A. Inorganic molecular sieves: Preparation, Modification and Industrial Application in Catalytic Processes. Coor. Chem. Rev. 2011, 255, 1558–1580. [Google Scholar] [CrossRef] [Green Version]
- Buzzoni, R.; Bordiga, S.; Ricchiardi, G.; Lamberti, C.; Zecchina, A.; Bellussi, G. Interaction of Pyridine with Acidic (H-ZSM5, H-β, H-MORD Zeolites) and Superacidic (H-Nafion Membrane) Systems: An IR Investigation. Langmuir 1996, 12, 930–940. [Google Scholar] [CrossRef]
- Ferwerda, R.; van der Maas, J.H.; van Duijneveldt, F.B. Pyridine Adsorption onto Metal Oxides: An ab Initio Study of Model Systems. J. Mol. Catal. A Chem. 1996, 104, 319–328. [Google Scholar] [CrossRef]
- Moissette, A.; Batonneau, Y.; Brémard, C. Conformation and Protonation of 2,2′-Bipyridine and 4,4′-Bipyridine in Acidic Aqueous Media and Acidic ZSM-5 Zeolites: A Raman Scattering Study. J. Am. Chem. Soc. 2001, 123, 12325–12334. [Google Scholar] [CrossRef]
- Daniell, W.; Topsoe, N.-Y.; Knözinger, H. An FTIR Study of the Surface Acidity of USY Zeolites: Comparison of CO, CD3CN, and C5H5N Probe Molecules. Langmuir 2001, 17, 6233–6239. [Google Scholar] [CrossRef]
- Ehresmann, J.O.; Wang, W.; Herreros, B.; Luigi, D.-P.; Venkatraman, T.N.; Song, W.; Nicholas, J.B.; Haw, J.F. Theoretical and Experimental Investigation of the Effect of Proton Transfer on the 27Al MAS NMR Line Shapes of Zeolite−Adsorbate Complexes: An Independent Measure of Solid Acid Strength. J. Am. Chem. Soc. 2002, 124, 10868–10874. [Google Scholar] [CrossRef]
- Dedecek, J.; Lucero, M.J.; Li, C.; Gao, F.; Klein, P.; Urbanova, M.; Tvaruzkova, Z.; Sazama, P.; Sklenak, S. Complex Analysis of the Aluminum Siting in the Framework of Silicon-Rich Zeolites. A Case Study on Ferrierites. J. Phys. Chem. C 2011, 115, 11056–11064. [Google Scholar] [CrossRef]
- Jobic, H.; Czjzek, M.; van Santen, R.A. Interaction of Water with Hydroxyl Groups in H-Mordenite: A Neutron Inelastic Scattering Study. J. Phys. Chem. 1992, 96, 1540–1542. [Google Scholar] [CrossRef]
- Sauer, J.; Ugliengo, P.; Garrone, E.; Saunders, V.R. Theoretical Study of van der Waals Complexes at Surface Sites in Comparison with the Experiment. Chem. Rev. 1994, 94, 2095–2160. [Google Scholar] [CrossRef]
- Kassab, E.; Jessri, H.; Allavena, M.; White, D. Ab initio Calculations of Carbonyl Adsorption Complexes at Zeolitic Brønsted Sites Simulated by Model Clusters: Role of Modeling. J. Phys. Chem. A 1999, 103, 2766–2774. [Google Scholar] [CrossRef]
- Rozanska, X.; van Santen, R.A.; Hutschka, F. A DFT Study of the Cracking Reaction of Thiophene Activated by Small Zeolitic Clusters. J. Catal. 2001, 200, 79–90. [Google Scholar] [CrossRef]
- Castellà-Ventura, M.; Akacem, Y.; Kassab, E. Vibrational Analysis of Pyridine Adsorption on the Brønsted Acid Sites of Zeolites Based on Density Functional Cluster Calculations. J. Phys. Chem. C 2008, 112, 19045–19054. [Google Scholar]
- Allavena, M.; Seiti, K.; Kassab, E.; Ferenczy, G.; Angyan, J.G. Quantum-Chemical Model Calculations on the Acidic Site of Zeolites Including Madelung-Potential Effects. Chem. Phys. Lett. 1990, 168, 461–467. [Google Scholar] [CrossRef]
- Yuan, S.; Shi, W.; Li, B.; Wang, J.; Jiao, H.; Li, Y.-W. Theoretical ONIOM2 Study on Pyridine Adsorption in the Channels and Intersection of ZSM-5. J. Phys. Chem. A 2005, 109, 2594–2601. [Google Scholar] [CrossRef]
- Boekfa, B.; Choomwattana, S.; Khongpracha, P.; Limtrakul, J. Effects of the Zeolite Framework on the Adsorptions and Hydrogen-Exchange Reactions of Unsaturated Aliphatic, Aromatic, and Heterocyclic Compounds in ZSM-5 Zeolite: A Combination of Perturbation Theory (MP2) and a Newly Developed Density Functional Theory (M06-2X) in ONIOM Scheme. Langmuir 2009, 25, 12990–12999. [Google Scholar]
- Patet, R.E.; Caratzoulas, S.; Vlachos, D.G. Adsorption in Zeolites Using Mechanically Embedded ONIOM Clusters. Phys. Chem. Chem. Phys. 2016, 18, 26094–26106. [Google Scholar] [CrossRef] [Green Version]
- O’Malley, A.J.; Logsdail, A.J.; Sokol, A.A.; Catlow, C.R.A. Modelling Metal Centres, Acid Sites and Reaction Mechanisms in Microporous Catalysts. Faraday Discuss. 2016, 188, 235–255. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Li, G.; Huang, L.; Chu, Y.; Liu, Z.; Xia, H.; Zheng, A.; Deng, F. An NMR Scale for Measuring the Base Strength of Solid Catalysts with Pyrrole Probe: A Combined Solid-State NMR Experiment and Theoretical Calculation Study. J. Phys. Chem. C 2017, 121, 3887–3895. [Google Scholar] [CrossRef]
- Nguyen, C.M.; Reyniers, M.F.; Marin, G.B. Theoretical Study of the Adsorption of the Butanol Isomers in H-ZSM-5. J. Phys. Chem. C 2011, 115, 8658–8669. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Curtiss, L.A.; Assary, R.S.; Greeley, J.; Kerber, T.; Sauer, J. Adsorption and Diffusion of Fructose in Zeolite HZSM-5: Selection of Models and Methods for Computational Studies. J. Phys. Chem. C 2011, 115, 21785–21790. [Google Scholar] [CrossRef]
- Boscoboinik, J.A.; Yu, X.; Emmez, E.; Yang, B.; Shaikhutdinov, S.; Fischer, F.D.; Sauer, J.; Freund, H.J. Interaction of Probe Molecules with Bridging Hydroxyls of Two-Dimensional Zeolites: A Surface Science Approach. J. Phys. Chem. C 2013, 117, 13547–13556. [Google Scholar] [CrossRef]
- Liu, C.; Tranca, I.; van Santen, R.A.; Hensen, E.J.M.; Pidko, E.A. Scaling Relations for Acidity and Reactivity of Zeolites. J. Phys. Chem. C 2017, 121, 23520–23530. [Google Scholar] [CrossRef] [PubMed]
- Boronat, M.; Corma, A. What Is Measured When Measuring Acidity in Zeolites with Probe Molecules? ACS Catal. 2019, 9, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Kassab, E.; Castellà-Ventura, M.; Akacem, Y. Theoretical Study of 4,4′-Bipyridine Adsorption on the Brønsted Acid Sites of H-ZSM-5 Zeolite. J. Phys. Chem. C 2009, 113, 20388–20395. [Google Scholar] [CrossRef]
- Akacem, Y.; Castellà-Ventura, M.; Kassab, E. Theoretical Study of the Aluminum Distribution Effects on the Double Proton Transfer Mechanisms upon Adsorption of 4,4′-Bipyridine on H-ZSM-5. J. Phys. Chem. A 2012, 116, 1261–1271. [Google Scholar] [CrossRef]
- Castellà-Ventura, M.; Moissette, A.; Kassab, E. A Theoretical Study of the Confinement Effects on the Energetics and Vibrational Properties of 4,4′-Bipyridine Adsorption on H-ZSM-5 Zeolite. Phys. Chem. Chem. Phys. 2018, 20, 6354–6364. [Google Scholar] [CrossRef]
- Nishi, K.; Kamiya, N.; Yokomori, Y. Single-Crystal Structure of a Pyridine Sorption Complex of Zeolite HZSM-5 (H-MFI). Micropor. Mesopor. Mat. 2007, 101, 83–89. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision, D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Zhao, Y.; Schultz, N.E.; Truhlar, D.G. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2006, 2, 364–382. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Parker, L.M.; Bibby, D.M.; Burns, G.R. Fourier-Transform Infrared Study of Pyridine Sorbed on Zeolite HY. J. Chem. Soc. Faraday Trans. 1991, 87, 3319–3323. [Google Scholar] [CrossRef]
- Hendra, P.J.; Passingham, C.; Warnes, G.M.; Burch, R.; Rawlence, D.J. Fourier Transform Raman Spectroscopy in the Study of Species Adsorbed on Catalyst Surfaces. Chem. Phys. Lett. 1989, 164, 178–184. [Google Scholar] [CrossRef]
- Castellà-Ventura, M.; Kassab, E. Vibrational Analysis of Some Transient Species Implicated in the Photoreduction of 4,4′-Bipyridine Based on ab Initio and Density Functional Calculations. J. Raman Spectrosc. 1998, 29, 511–536. [Google Scholar] [CrossRef]
- Klots, T.D. Raman Vapor Spectrum and Vibrational Assignment for Pyridine. Spectrochim. Acta A 1998, 54, 1481–1498. [Google Scholar] [CrossRef]
- Ould-Moussa, L.; Poizat, O.; Castellà-Ventura, M.; Buntinx, G.; Kassab, E. Ab Initio Computations of the Geometrical, Electronic, and Vibrational Properties of the Ground State, the Anion Radical, and the N,N′-Dihydro Cation Radical of 4,4′-Bipyridine Compared to Transient Raman Spectra. J. Phys. Chem. 1996, 100, 2072–2082. [Google Scholar] [CrossRef]
- Zhuang, Z.; Cheng, J.; Wang, X.; Zhao, B.; Han, X.; Luo, Y. Surface-Enhanced Raman Spectroscopy and Density Functional Theory Study on 4,4′-Bipyridine Molecule. Spectrochim. Acta A 2007, 67, 509–516. [Google Scholar] [CrossRef] [PubMed]
Si/Al | Geometrical Parameters 1 | PY + 32T | 44BPY + 32T | ||||
---|---|---|---|---|---|---|---|
PYH+/32T− | 44BPYH+/32T− | 44BPYH22+/32T2− | |||||
Open | Closed | Open | Closed | Open | Closed | ||
31 (31Si,1Al) | NH | 1.060 | 1.052 | 1.036 | 1.024 | ||
OH | 1.646 | 1.717 | 1.884 | 2.596 | |||
NO | 2.698 | 2.698 | 2.744 | 3.301 | |||
NHO | 171.4 | 153.3 | 138.2 | 125.8 | |||
15 (30Si,2Al) | NH | 1.060 | 1.052 | 1.039 | 1.024 | 1.046 | 1.028 |
OH | 1.642 | 1.711 | 1.875 | 2.599 | 1.826 | 2.392 | |
NO | 2.696 | 2.695 | 2.781 | 3.316 | 2.760 | 3.147 | |
NHO | 172.0 | 153.8 | 143.7 | 126.9 | 146.7 | 129.5 |
Adsorption Complexes | Si/Al = 15 | Si/Al = 31 | ||||
---|---|---|---|---|---|---|
Eads | Edisp 1 | Eads | Edisp 1 | |||
B3LYP | M06-2X-D3 | B3LYP | M06-2X-D3 | |||
(PYH+/32T−)op | −23.2 | −35.2 | −12.0 | −23.5 | −35.3 | −11.8 |
(PYH+/32T−)cl | −3.7 | −28.4 | −24.7 | −3.1 | −28.5 | −25.4 |
(44BPYH+/32T−)op | −0.7 | −44.0 | −43.3 | +3.9 | −36.8 | −40.7 |
(44BPYH+/32T−)cl | +2.1 | −39.0 | −41.1 | +12.0 | −25.5 | −37.5 |
44BPYH22+/32T2− | −3.2 | −44.2 | −41.0 |
Vibrational Modes 1 | PY | PYH+/32T− | |||||
---|---|---|---|---|---|---|---|
Exp 2 | Calc 3 | Exp 4,5 | Closed | Open | |||
Si/Al = 15 Calc 3,5 | Si/Al = 31 Calc 3,5 | Si/Al = 15 Calc 3,5 | Si/Al = 31 Calc 3,5 | ||||
1 | 991 | 987 | 1007 (+16)–1015 (+24) | 994 (+7) | 990 (+4) | 994 (+7) | 990 (+4) |
12 | 1032 | 1021 | 1025 (−7)–1035 (+3) | 1013 (−8) | 1021 (−1) | 1013 (−8) | 1021 (0) |
19b | 1442 | 1446 | 1530 (+88)–1550 (+108) | 1560 (+114) | 1557 (+111) | 1560 (+115) | 1556 (+111) |
19a | 1483 | 1487 | 1485 (+2)–1500 (+17) | 1485 (−2) | 1493 (+6) | 1485 (−2) | 1493 (+7) |
8b | 1581 | 1591 | 1630 (+40)–1640 (+50) | 1661 (+70) | 1645 (+54) | 1661 (+70) | 1645 (+54) |
8a | 1590 | 1595 | 1608 (+27)–1623 (+42) | 1630 (+35) | 1636 (+40) | 1630 (+35) | 1635 (+40) |
Vibrational Modes 1,2 | 44BPY | 44BPYH+/32T− | |||||
---|---|---|---|---|---|---|---|
Exp 3 | Calc 4 | Exp 5,6 Si/Al = 100 | Closed | Open | |||
Si/Al = 15 Calc 4,6 | Si/Al = 31 Calc 4,6 | Si/Al = 15 Calc 4,6 | Si/Al = 31 Calc 4,6 | ||||
6b-B3 | 659 | 663 | 652 (−7) | 647 (−16) | 649 (−14) | 645 (−18) | 642 (−21) |
1-A | 762 | 750 | 764 (+2) | 754 (+4) | 752 (+2) | 751 (+1) | 764 (+14) |
12-B1 | 989 | 988 | 994 (+5) | 1004 (+15) | 996 (+8) | 1006 (+18) | 999 (+11) |
12-A | 1001 | 994 | 1012 (+11) | 1017 (+22) | 1018 (+24) | 1021 (+27) | 1016 (+21) |
18a-B1 | 1075 | 1076 | 1064 (−11) | 1075 (−1) | 1076 (0) | 1073 (−3) | 1067 (−9) |
18a-A | 1075 | 1079 | 1081 (+6) | 1084 (+5) | 1088 (+9) | 1090 (+11) | 1093 (+14) |
9a-B1 | 1218 | 1228 | 1209 (−9) | 1220 (−8) | 1223 (−5) | 1224 (−4) | 1218 (−10) |
9a-A | 1216 | 1231 | 1222 (+6) | 1242 (+11) | 1243 (+12) | 1240 (+9) | 1238 (+7) |
Ω-A | 1300 | 1291 | 1290 (−10) | 1279 (−12) | 1282 (−9) | 1278 (−13) | 1281 (−10) |
19a-B1 | 1487 | 1496 | 1516 (+29) | 1502 (+6) | 1502 (+6) | 1505 (+9) | 1500 (+4) |
19a-A | 1514 | 1516 | 1531 (+17) | 1534 (+18) | 1533 (+17) | 1533 (+16) | 1526 (+10) |
8a-B1 | 1589 | 1608 | 1634 (+45) | 1653 (+45) | 1656 (+48) | 1651 (+43) | 1647 (+39) |
8a-A | 1604 | 1614 | 1615 (+11) | 1620 (+5) | 1609 (−6) | 1620 (+6) | 1613 (−1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellà-Ventura, M.; Moissette, A.; Kassab, E. DFT Study of Si/Al Ratio and Confinement Effects on the Energetics and Vibrational Properties of some Aza-Aromatic Molecules Adsorbed on H-ZSM-5 Zeolite. Computation 2020, 8, 81. https://doi.org/10.3390/computation8030081
Castellà-Ventura M, Moissette A, Kassab E. DFT Study of Si/Al Ratio and Confinement Effects on the Energetics and Vibrational Properties of some Aza-Aromatic Molecules Adsorbed on H-ZSM-5 Zeolite. Computation. 2020; 8(3):81. https://doi.org/10.3390/computation8030081
Chicago/Turabian StyleCastellà-Ventura, Martine, Alain Moissette, and Emile Kassab. 2020. "DFT Study of Si/Al Ratio and Confinement Effects on the Energetics and Vibrational Properties of some Aza-Aromatic Molecules Adsorbed on H-ZSM-5 Zeolite" Computation 8, no. 3: 81. https://doi.org/10.3390/computation8030081
APA StyleCastellà-Ventura, M., Moissette, A., & Kassab, E. (2020). DFT Study of Si/Al Ratio and Confinement Effects on the Energetics and Vibrational Properties of some Aza-Aromatic Molecules Adsorbed on H-ZSM-5 Zeolite. Computation, 8(3), 81. https://doi.org/10.3390/computation8030081