Estimations of the Optical Equivalence Theorem for Opto-Mechanical Systems for Investigation in General Relativity and High-Energy Physics
Abstract
:1. Introduction
2. Some Special Cases for the Optical Equivalence Theorem
3. Quantum States, Semiclassical States, Laser Fields and Optical Systems
4. Intense Fields and Highly Energetic Particles
5. Applications for the States with an Almost-Infinite-Expectation-Valued Operators
Further Approximations for the Density Operators
6. Null-Hypersurface Quantization and Laser Systems
7. More about Semiclassical Optical Systems
8. Applications to Optical Systems
8.1. Radiative Effects in Semiclassical Theory
8.2. The Optical Equivalents for Quantum-Mechanical Operators
8.3. An Example: The Long-Time Limit for the Error Estimation
9. Concluding Remarks
Funding
Conflicts of Interest
References
- Klauder, J.R.; Streit, L. Optical Equivalence Theorem for Unbounded Observables. J. Math. Phys. 1974, 15, 760–763. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G. Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams. Phys. Rev. 1963, 10, 277. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Agarwal, G.S.; Srinivasan, V. Positivization and regularization of quantum phase space distributions. J. Phys. A Math. Gen. 1994, 27, L39. [Google Scholar] [CrossRef]
- Lachs, G. Theoretical aspects of mixtures of thermal and coherent radiation. Phys. Rev. 1965, 138, B1012. [Google Scholar] [CrossRef]
- Mehta, C.L.; Sudarshan, E.C.G. Relation between quantum and semiclassical description of optical coherence. Phys. Rev. 1965, 138, B274. [Google Scholar] [CrossRef]
- Sudarshan, G. Quantum theory of partial coherence. J. Math. Phys. Sci. 1969, 3, 121. [Google Scholar]
- Perelomov, A.M. Generalized coherent states and some of their applications. Sov. Phys. Usp. 1977, 20, 703–720. [Google Scholar] [CrossRef]
- Gisin, N.; Thew, R. Quantum communication. Nat. Photonics 2007, 1, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Cui, L.; Li, J.; Liu, Y.; Li, X.; Ou, Z.Y. Versatile and precise quantum state engineering by using nonlinear interferometers. Opt. Express 2019, 27, 20479–20492. [Google Scholar] [CrossRef]
- Leutwyler, H.; Klauder, J.R.; Streit, L. Quantum field theory on lightlike slabs. Nuovo Cim. A 1970, 66, 536–554. [Google Scholar] [CrossRef]
- Cahill, K.E.; Glauber, R.J. Density Operators and Quasiprobability Distributions. Phys. Rev. 1969, 177, 1882–1902. [Google Scholar] [CrossRef] [Green Version]
- Lohani, S.; Knutson, E.M.; O’Donnell, M.; Huver, S.D.; Glasser, R.T. On the use of deep neural networks in optical communications. Appl. Opt. 2018, 57, 4180–4190. [Google Scholar] [CrossRef] [PubMed]
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables; Applied Mathematics Series; United States Department of Commerce, National Bureau of Standards: Washington, DC, USA; Dover Publications: New York, NY, USA, 1972; Volume 55. [Google Scholar]
- Becker, W. Quantum electrodynamics in intense laser fields. Laser Part. Beams 1991, 9, 603–618. [Google Scholar] [CrossRef]
- Ehlotzky, F.; Krajewska, K.; Kamiński, J.Z. Fundamental processes of quantum electrodynamics in laser fields of relativistic power. Rep. Prog. Phys. 2009, 72, 046401. [Google Scholar] [CrossRef]
- Ehlotzky, F. Effect of laser light polarization on multiphoton scattering processes. Acta Phys. Austriaca 1972, 36, 243–247. [Google Scholar]
- Di Piazza, A.; Müller, C.; Hatsagortsyan, K.Z.; Keitel, C.H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 2012, 84, 1177. [Google Scholar] [CrossRef] [Green Version]
- Głazek, S.D.; Trawiński, A.P. Neutrino oscillations in the front form of Hamiltonian dynamics. Phys. Rev. D 2013, 87, 025002. [Google Scholar] [CrossRef] [Green Version]
- Kogut, J.B.; Soper, D.E. Quantum electrodynamics in the infinite-momentum frame. Phys. Rev. D 1970, 1, 2901. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Roskies, R.; Suaya, R. Quantum Electrodynamics and Renormalization Theory in the Infinite-Momentum Frame. Phys. Rev. D 1973, 8, 4574. [Google Scholar] [CrossRef]
- Soper, D.E. Massive quantum electrodynamics in the infinite-momentum frame. Phys. Rev. D 1971, 4, 1620. [Google Scholar] [CrossRef] [Green Version]
- Rohrlich, F.; Ten Eyck, J.H. Null plane quantum electrodynamics. Phys. Lett. B 1973, 46, 102–104. [Google Scholar] [CrossRef]
- Bakker, B.L.G.; Bassetto, A.; Brodsky, S.J.; Broniowski, W.; Dalley, S.; Frederico, T.; Glazek, S.D.; Hiller, J.R.; Ji, C.-R.; Karmanov, V.; et al. Light-Front Quantum Chromodynamics: A framework for the analysis of hadron physics. Nucl. Phys. B Proc. Suppl. 2014, 251, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Baur, G.; Hencken, K.; Trautmann, D. Electron–positron pair production in ultrarelativistic heavy ion collisions. Phys. Rep. 2007, 453, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Heinzl, T. Strong-field QED and high-power lasers. Int. J. Mod. Phys. Conf. Ser. 2012, 14, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Seipt, D.; Sorbo, D.D.; Ridgers, C.P.; Thomas, A.G.R. Theory of radiative electron polarization in strong laser fields. Phys. Rev. A 2018, 98, 023417. [Google Scholar] [CrossRef] [Green Version]
- Fedotov, A.M.; Narozhny, N.B.; Mourou, G.; Korn, G. Limitations on the attainable intensity of high power lasers. Phys. Rev. Lett. 2010, 105, 080402. [Google Scholar] [CrossRef] [Green Version]
- Cajiao Vélez, F.; Kamiński, J.Z.; Krajewska, K. Electron Scattering Processes in Non-Monochromatic and Relativistically Intense Laser Fields. Atoms 2019, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Mitter, H. Quantum Electrodynamics in Laser Fields. Acta Phys. Austriaca Suppl. 1975, 14, 397–498. [Google Scholar]
- Tsai, W.; Erber, T. The Propagation of Photons in Homogeneous Magnetic Fields: Index of Refraction. Phys. Rev. D 1975, 12, 1132. [Google Scholar] [CrossRef]
- Lohani, S.; Knutson, E.M.; Zhang, W.; Glasser, R.T. Dispersion Characterization and Pulse Prediction with Machine Learning. arXiv 2019, arXiv:1909.02526. [Google Scholar] [CrossRef] [Green Version]
- Holland, M.J.; Burnett, K. Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett. 1993, 71, 1355–1358. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Yabuki, H. Null-plane quantization and Haag’s theorem. Lett. Math. Phys. 1977, 1, 371–374. [Google Scholar] [CrossRef]
- Leutwyler, H.; Leutwyler, H. On the Average transverse momentum of the quarks within a meson. Phys. Lett. B 1974, 48, 45–47. [Google Scholar] [CrossRef]
- Neville, R.A.; Rohrlich, F. Quantum electrodynamics on null planes and applications to lasers. Phys. Rev. D 1971, 3, 1692. [Google Scholar] [CrossRef]
- Prokhvatilov, E.V.; Naus, H.W.L.; Pirner, H.J. Effective light-front quantization of scalar field theories and two-dimensional electrodynamics. Phys. Rev. D 1995, 51, 2933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Salvo, E.; Kondratyuk, L.; Saracco, P. Relativistic three-dimensional two-and three-body equations on a null plane and applications to meson and baryon Regge trajectories. Z. Phys. C Part. Fields 1995, 69, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Konotop, V.V.; Zezyulin, D.A. Spectral singularities of odd- PT -symmetric potentials. Phys. Rev. A 2019, 99, 013823. [Google Scholar] [CrossRef] [Green Version]
- Faizal, M.; Momeni, D. Universality of short distance corrections to quantum optics. arXiv 2018, arXiv:1811.01934. [Google Scholar] [CrossRef]
- Lohani, S.; Glasser, R.T. Turbulence correction with artificial neural networks. arXiv 2018, arXiv:1806.07456. [Google Scholar] [CrossRef]
- Rukosuev, A.L.; Kudryashov, A.V.; Lylova, A.N.; Samarkin, V.V.; Sheldakova, Y.V. Adaptive optics system for real-time wavefront correction. Atmos. Ocean. Opt. 2015, 28, 381–386. [Google Scholar] [CrossRef]
- Tranter, A.D.; Slatyer, H.J.; Hush, M.R.; Leung, A.C.; Everett, J.L.; Paul, K.V.; Vernaz-Gris, P.; Lam, P.K.; Buchler, B.C.; Campbell, G.T. Multiparameter optimisation of a magneto-optical trap using deep learning. arXiv 2018, arXiv:1805.00654. [Google Scholar] [CrossRef] [PubMed]
- Crisp, M.D.; Jaynes, E.T. Radiative effects in semiclassical theory. Phys. Rev. 1969, 179, 1253–1261, Erratum in 1969, 185, 2046. [Google Scholar] [CrossRef]
- Langhoff, P.W.; Epstein, S.T.; Karplus, M. Aspects of time-dependent perturbation theory. Rev. Mod. Phys. 1972, 44, 602–644. [Google Scholar] [CrossRef]
- Clauser, J.F. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect. Phys. Rev. D 1974, 9, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Aitchison, I.J.R. Berry’s topological phase in quantum mechanics and quantum field theory. Phys. Scr. 1988, T23, 12–20. [Google Scholar] [CrossRef]
- Krizan, J.E. Time-symmetric, approximately relativistic particle interactions and radiation. Phys. Rev. D 1980, 22, 3017–3022. [Google Scholar] [CrossRef]
- Dowling, J.P.; Milburn, G.J. Quantum technology: The second quantum revolution. Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Eng. Sci. 2003, 361, 1655–1674. [Google Scholar] [CrossRef] [Green Version]
- Hudelist, F.; Kong, J.; Liu, C.; Jing, J.; Ou, Z.Y.; Zhang, W. Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun. 2014, 5, 3049. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Venugopalan, G.; Kuns, K.; Wipf, C.; Markowitz, A.; Wade, A.R.; Chen, Y.; Adhikari, R.X. A phase-sensitive optomechanical amplifier for quantum noise reduction in laserinterferometers. arXiv 2019, arXiv:1909.02264. [Google Scholar]
- Arshansky, R.I.; Horwitz, L.P. Covariant phase shift analysis for relativistic potential scattering. Phys. Lett. A 1988, 131, 222–226. [Google Scholar] [CrossRef]
- Shimazu, R.; Yamamoto, N. Quantum functionalities via feedback amplification. arXiv 2019, arXiv:1909.12822. [Google Scholar]
- Maciejewski, A.J.; Przybylska, M.; Stachowiak, T. An exactly solvable system from quantum optics. Phys. Lett. A 2015, 379, 1503. [Google Scholar] [CrossRef] [Green Version]
- Smolyaninov, I.I.; Smolyaninova, V.N. Experimental observation of melting of the effective Minkowski spacetime in cobalt-based ferrofluids. In Reviews in Plasmonics 2016; Springer: Cham, Switzerland, 2017; pp. 137–158. [Google Scholar]
- Chubukov, A.V.; Maslov, D.L.; Yudson, V.I. Optical conductivity of a two-dimensional metal at the onset of spin-density-wave order. Phys. Rev. B 2014, 89, 155126. [Google Scholar] [CrossRef] [Green Version]
- Hartnoll, S.A.; Hofman, D.M.; Metlitski, M.A.; Sachdev, S. Quantum critical response at the onset of spin-density-wave order in two-dimensional metals. Phys. Rev. B 2011, 84, 125115. [Google Scholar] [CrossRef] [Green Version]
- Grassberger, P.; Sandhas, W. Relation between the projection operator formalism and the Faddeev theory. Z. Phys. Hadron. Nucl. 1969, 220, 29–44. [Google Scholar] [CrossRef]
- Young, S.M.; Sarovar, M.; Léonard, F. Design of High-Performance Photon Number Resolving Photodetectors Based on Coherently Interacting Nanoscale Elements. arXiv 2020, arXiv:1909.07911. [Google Scholar] [CrossRef] [Green Version]
- Schkolnik, V.; Leykauf, B.; Hauth, M.; Freier, C.; Peters, A. The effect of wavefront aberrations in atom interferometry. Appl. Phys. B 2015, 120, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Dubetsky, B.; Libby, S.B.; Berman, P. Atom interferometry in the presence of an external test mass. Atoms 2016, 4, 14. [Google Scholar] [CrossRef]
- Jacquet, M.J.; Koenig, F. Analytical description of quantum emission in optical analogues to gravity. arXiv 2019, arXiv:1908.02060. [Google Scholar]
- Ang, S.Z.; Harris, G.I.; Bowen, W.P.; Tsang, M. Optomechanical parameter estimation. New J. Phys. 2013, 15, 103028. [Google Scholar] [CrossRef]
- Chen, Y. Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics. J. Phys. B 2013, 46, 104001. [Google Scholar] [CrossRef] [Green Version]
- Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391. [Google Scholar] [CrossRef]
- Tsang, M. Testing quantum mechanics: A statistical approach. Quantum Meas. Quantum Metrol. 2013, 1, 84–109. [Google Scholar] [CrossRef] [Green Version]
- Yurke, B.; McCall, S.L.; Klauder, J.R. SU(2) and SU(1,1) interferometers. Phys. Rev. A 1986, 33, 4033–4054. [Google Scholar] [CrossRef]
- Huo, N.; Liu, Y.; Li, J.; Cui, L.; Chen, X.; Palivela, R.; Xie, T.; Li, X.; Ou, Z.Y. Direct temporal mode measurement for the characterization of temporally multiplexed high dimensional quantum entanglement in continuous variables. arXiv 2020, arXiv:1910.09102. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Ou, Z.Y. Direct temporal mode measurement of photon pairs by stimulated emission. arXiv 2020, arXiv:1910.09720. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Cui, L.; Li, J.; Liu, Y.; Li, X.; Ou, Z.Y. Quantum state engineering by nonlinear quantum interference. arXiv 2018, arXiv:1811.07646. [Google Scholar]
- Sahota, J.; Quesada, N. Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode entanglement. Phys. Rev. A 2015, 91, 013808. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.K.; Yoon, T.H.; Cho, M. Interferometric quantum spectroscopy with undetected photons via distinguishability modulation. Opt. Express 2019, 27, 14853–14870. [Google Scholar] [CrossRef]
- Du, J.; Cao, L.; Zhang, K.; Jing, J. Experimental observation of multi-spatial-mode quantum correlations in four-wave mixing with a conical pump and a conical probe. Appl. Phys. Lett. 2017, 110, 241103. [Google Scholar] [CrossRef]
- Glauber, R.J. Coherent and incoherent states of the radiation field. Phys. Rev. 1963, 131, 2766–2788. [Google Scholar] [CrossRef]
- Cahill, K.E. Pure states and the p representation. Phys. Rev. 1969, 180, 1239–1243. [Google Scholar] [CrossRef]
- Becker, W.; Mitter, H. Vacuum polarization in laser fields. J. Phys. A Math. Gen. 1975, 8, 1638–1657. [Google Scholar] [CrossRef]
- Brandão, P.A.; Cavalcanti, S.B. Scattering of partially coherent radiation by non-Hermitian localized structures having parity-time symmetry. Phys. Rev. A 2019, 100, 043822. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Du, L.; Li, C.; Zayats, A.V.; Yuan, X. Spin-momentum law for structured guided modes: The generalized quantum spin-Hall effect for light. arXiv 2019, arXiv:1910.03904. [Google Scholar]
- Zobrist, N.; Eom, B.H.; Day, P.; Mazin, B.A.; Meeker, S.R.; Bumble, B.; LeDuc, H.G.; Coiffard, G.; Szypryt, P.; Fruitwala, N.; et al. Wide-band parametric amplifier readout and resolution of optical microwave kinetic inductance detectors. Appl. Phys. Lett. 2019, 115, 042601. [Google Scholar] [CrossRef] [Green Version]
- Frascella, G.; Mikhailov, E.E.; Takanashi, N.; Zakharov, R.V.; Tikhonova, O.V.; Chekhova, M.V. Wide-field SU(1,1) interferometer. Optica 2019, 6, 1233–1236. [Google Scholar] [CrossRef]
- Xin, J.; Lu, X.-M.; Li, X.; Li, G. Optimal phase point for SU(1,1) interferometer. J. Opt. Soc. Am. B 2019, 36, 2824–2833. [Google Scholar] [CrossRef]
- Lukens, J.M.; Pooser, R.C.; Peters, N.A. A broadband fiber-optic nonlinear interferometer. Appl. Phys. Lett. 2018, 113, 091103. [Google Scholar] [CrossRef]
- Pezze, L.; Smerzi, A.; Oberthaler, M.K.; Schmied, R.; Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 2018, 90, 035005. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, K.L.; Picklesimer, A. Modifications of the optical potential formalism arising from the pauli principle. Nucl. Phys. A 1981, 369, 336–364. [Google Scholar] [CrossRef]
- Barker, B.M.; O’Connell, R.F. Gravitational Two-Body Problem with Arbitrary Masses, Spins, and Quadrupole Moments. Phys. Rev. D 1975, 12, 329. [Google Scholar] [CrossRef]
- Kuzmichev, V.E.; Kuzmichev, V.V. Behavior of the Gravitational System Close to the Planck Epoch. Ukr. J. Phys. 2017, 62, 545. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Caves, C.M.; Milburn, G.J. Generalized uncertainty relations: Theory, examples, and Lorentz invariance. Ann. Phys. 1996, 247, 135–173. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Gard, B.T.; Gao, Y.; Yuan, C.H.; Zhang, W.; Lee, H.; Dowling, J.P. Phase sensitivity at the Heisenberg limit in an SU (1, 1) interferometer via parity detection. Phys. Rev. A 2016, 94, 063840. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Yao, Y.; Li, Y. Optimal quantum parameter estimation in a pulsed quantum optomechanical system. Phys. Rev. A 2016, 93, 013848. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; He, B. Highly efficient cooling of mechanical resonator with square pulse drives. Opt. Express 2018, 26, 33830–33840. [Google Scholar] [CrossRef]
- Caves, C.M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 1981, 23, 1693–1981. [Google Scholar] [CrossRef]
- Yu, Y.X.; Ye, J.; Zhang, C. Photon Berry phases, Instantons, Quantum chaos and quantum analog of Kolmogorov-Arnold-Moser (KAM) theorem in Dicke models. arXiv 2019, arXiv:1903.02947. [Google Scholar]
- Kartashov, Y.V.; Astrakharchik, G.E.; Malomed, B.A.; Torner, L. Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys. 2019, 1, 185–197. [Google Scholar] [CrossRef]
- Gross, C.; Zibold, T.; Nicklas, E.; Esteve, J.; Oberthaler, M.K. Nonlinear atom interferometer surpasses classical precision limit. Nature 2010, 464, 1165–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asano, M.; Ohta, R.; Aihara, T.; Tsuchizawa, T.; Okamoto, H.; Yamguchi, H. Optically probing Schwinger angular momenta in a micromechanical resonator. arXiv 2019, arXiv:1905.12178. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecian, O.M. Estimations of the Optical Equivalence Theorem for Opto-Mechanical Systems for Investigation in General Relativity and High-Energy Physics. Computation 2020, 8, 60. https://doi.org/10.3390/computation8030060
Lecian OM. Estimations of the Optical Equivalence Theorem for Opto-Mechanical Systems for Investigation in General Relativity and High-Energy Physics. Computation. 2020; 8(3):60. https://doi.org/10.3390/computation8030060
Chicago/Turabian StyleLecian, Orchidea Maria. 2020. "Estimations of the Optical Equivalence Theorem for Opto-Mechanical Systems for Investigation in General Relativity and High-Energy Physics" Computation 8, no. 3: 60. https://doi.org/10.3390/computation8030060
APA StyleLecian, O. M. (2020). Estimations of the Optical Equivalence Theorem for Opto-Mechanical Systems for Investigation in General Relativity and High-Energy Physics. Computation, 8(3), 60. https://doi.org/10.3390/computation8030060