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Abstract: The optical equivalence principle is analyzed according to the possibility of describing
unbounded states, and the suitable approximations are calculated for highly energetic phenomena.
Among these possibilities, the relevance for laser fields, interferometers, and optomehcanical systems
are implemented. Their suitableness for research in General Relativity, Cosmology, and High-Energy
Physics are outlined.
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1. Introduction

Quantum and optical systems are described at different spacetime distances, for which different
measurements describe different features of the spacetime as well as of those of highly energetic
phenomena. The implementation of laser systems and of opto-mechanical systems are developed
after its foundation on the quantum theory associated with the pertinent systems. Their relevance for
General Relativity and High-Energy Physics is of pertinence in the analysis of several measurement
operations and estimations, in the modellization of the research results. The feature of laser fields,
optical systems and optomechanical devices suited for such research guidelines are to be outlined on
the basis of the quantum properties they rely on. The optical equivalence theorem [1] allows on to
single out the features of a quantum system, which can be studied also by means of the examination of
the wavepackets. The optical theorem can also be implemented for unbounded observables [2].

The Optical Equivalence Principle allows one to construct a sequence for the density operator for
laser beams. Such a definition results in unbounded operators for an arbitrary number of quantum
states. Several demonstration of the Optical Equivalence Theorem were proposed, which rely on
different features of quantum-optic systems and of quantum systems [3–7]. It is, therefore, possible to
compare the density operator, the expressions for the sequences of the density operator, the expectation
values of the density operators and the sequences for the expectation values of the density operators
and those of other operators at the quantum description, at the semiclassical description, for quantum
systems, for quantum optical systems, for semi-classical optical systems and for optical systems.

As a result, it is possible to establish a relation between the sequences of the density matrix
operators expansions and their expectation values. More in particular, it is possible to establish the
pertinent coordinate transformations and the majorizations both for the sequences of the density
operators as well as for the weighting functions for the states of the considered systems to obtain a
consistent descriptions of the observables of the systems. As a result, the description of the observables
of the quantum systems can be compared to those of the optical systems, the latter being considered
at the quantum level, at the semi-classical level and at the classical one. The possibility to extend the
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techniques for other operators is also considered. In this way, it is possible to describe optical systems,
whose dimensions are larger than the Plank length, but which are constituted by elements of quantum
nature, at the the quantum level, at the semiclassical approximation and at the classical scheme.
Furthermore, the calculations hold exactly also for optical systems containing particles of very large
(but not infinite) momentum, whose probability distribution is non-trivial. Fourier decomposition
can be also obtained, by extending the proper quantization techniques and then by evaluating all
the orders of the quantum operators as a sequence of operators. The proper quantization techniques
are those requested by the analysis of the partition function of systems of quantum states of infinite
momentum on a Minkowski spacetime. The expectation values are therefore expressed not as a
sequence, but at their quantum values plus the summands of the correction terms for the semiclassical
states. The Fourier decomposition of the spectral modes as well consists of the quantum expectation
values plus the correction terms. The advantage of these examinations of the Optical Equivalence
Theorem are therefore appreciated by the availability of exact terms plus the exact expansion of
the correction terms without the mixing and the superposition of the correction terms for different
quantum states also at the semiclassical description. The necessity for well-defined-temporal-modes
photon states in quantum metrology was outlined in [8,9] for quantum networks.

The paper is organized as follows. The Introduction is aimed at exposing the motivations of
the analysis of the paper. In Section 2, the particular features of the optical equivalence theorem
are revised. In Section 3 some peculiarities of the semiclassical states of laser optical systems are
recalled. In Section 4, the features of laser systems useful in this analysis are reviewed. In Section 5,
the optical equivalence theorem for laser fields is recalled. The approximations necessary for the
application to the investigated systems are therefore calculated. In particular, the evaluation of
the approximations of the weighting function necessary for the expansion of the density matrix
are performed. The expansion of the density matrix is calculated at the requested approximation
order. Section 6 is devoted to the description of the quantum systems and the corresponding optical
ones, for which the quantization techniques necessitate the approximations calculated. In Section 7,
semiclassical optical systems to which the approximations calculated are of pertinence, are outlined.
In Section 8, applications to optical systems are envisaged, for which the properties of the density
matrix analyzed are explicative. The main results of the majorizations for the density matrix operator
calculated in the present analysis for the Optical Equivalence Theorem are therefore applied for
an intense laser-beam fields within the framework of the particular representation of the Optical
Equivalence theorem, which does not rely on the Fock occupation space, to the analyses of the power
spectrum noise for a quantum-mechanical (optical) system of an intense laser-beam field. In the
Concluding Remarks Section, the main subjects of General Relativity and of High-Energy Physics
are recalled, for which the quantum systems investigated and the optical systems considered, as well
as the optomechanical devices taken into account, are connected within the Heisenberg limit of the
considered devices.

2. Some Special Cases for the Optical Equivalence Theorem

The optical equivalence principle in based on the comparison if the expectation values of
the measure of operator measurements in the Hilbert space and in the phase space formulation.
More precisely, the optical equivalence theorem [2] demonstrates the connection between the
classical probability distribution formalism and the density matrix for a quantum-mechanical system.
Among the several possible demonstrations, in particular, in [1], one of the proofs of the theorem are
not based on the number operator: this allows one to construct a diagonal density operator ρ for the
coherent states | z >, i.e.,

ρ ≡ π−1
∫

φ(z) | z >< z | d2z (1)
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For the majorization techniques applied in the present paper, the problems evidentiated by the
unapplicability [1,10] of the definitions for the Fock occupation space are avoided; in particular it is
possible to proceed also for the other degrees of freedom, where the integration is extended on the
subregions not available Fock occupation space, where annihilation operators and creation ones are
not allowed to be defined [11].

The interest in this demonstration relies on the particular hypotheses assumed for the states | z >

of the system. For unbounded observables, the function φ(z) is replaced by a suitable function, i.e.,

φ(z)→ φβ(z) ≡ Sβφ(z), (2)

where Sβ is a suitable support-controlling function for φ(z) in the definition of φβ(z).
To proceed further, a weighting function of compact support SM can be further defined, which acts

on φβ(z) as φβ,M(z) and defines the corresponding density matrix.
The change of variable

z′e−β/2 → z (3)

leads to the definition of the function φM of compact support, such that the corresponding density
operator ρM, which is finally diagonal.

This definition of the density operator ρM is a well-defined approximating sequence for
unbounded operators for the definition of a density operators (which is, on the contrary,
directly defined for bounded operators. Differently from other demonstrations, this procedure is
not based on any hypotheses for the Fock representation.).

3. Quantum States, Semiclassical States, Laser Fields and Optical Systems

The optical equivalence principle is straightforward extended to the semiclassical description by
making use of semiclassical wavepackets in (1); the case for Gaussian wavepackets is illustrated in [2].
In the semiclassical description, the support controlling function Sβ is supposed therefore to act on
the semiclassical wavepackets. The statistical states of a quantum-mechanical system are described as
equivalent by the one-to one correspondence of the degrees of freedom; the definition of the partition
function also holds. The definition of a support controlling weighting function for the function
φ(z) has therefore its effects on the definition of the partition function. In particular, the partition
function must be therefore well-defined also for unbounded-observable states. The definition of
the weighting-support-controlling function must therefore be suitably act on the density-matrix
definition leading to the partition function on those states, which have an absolute infinite value for the
expectation value of those operators, which lead to an infinite value for the expectation value intended
(inserted) as a physical state in the definition of the classical density matrix (1).

Quantum optical systems for spatially non-Gaussian states of light [12], the output modes are
characterized as superpositions of Laguerre-Gauss (LG) modes for numerically generated orbital
angular momentum (OAM) degree-of-freedom under the hypothesis of external noise also for models
of radial mode index both for a deep neural network and for a convolutional neural network.
At varying the integer l—the argument of the LG polynomials-‘ corresponds to one 2π phase oscillation
with different radial-mode index p by analyzing the twisted superpositions,as

| Ψl,−l
p (r, φ) |2LG' r2|l|L|l|p

(
2r2

w2

)
exp

(
2r2

w2

)
(1 + cos (2 | l | φ− θ)) (4)

| Ψn,−n
p (r, φ) |2BG' J|n|(βr)2exp

(
2r2

w2

)
(1 + (−1)n cos (2 | n | φ− θ)) , (5)

with BG the Bessel-Gauss polynomials [13]. The numerically generated external noise is not specified
whether to be ascribed with gravitational effects and/or quantum-gravitational effects or interactions.
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Applications in metrology are ensured by the validity of the analysis for many kinds of interferometers,
including hybrid interferometers.

4. Intense Fields and Highly Energetic Particles

In an intense laser filed, several many couples of electron-positron pairs occupy the vacuum
available for the experimental setting [14]. Experimental availability is ensured by the Compton
scattering producing a high rate at harmonic range.

The relativistic analysis of quantum electrodynamics in intense laser fields allows one for the
Relativistic investigation of Compton scattering in the collision with proton scattering [15]. As in [15],
in this case, the cross-section is evaluated after the series expansion of the pertinent JN−1(z) Bessel
functions, which became relevant only at the first order, as

dσ ∼ r2
0N4

(
I

IC

)N−1
2−2(N−1)dΩ, (6)

with r0 the electron radius, v the velocity of the motion of a (non-)relativistic electron of mass m and
charge e, I the unperturbed intensity, IC the critical intensity of the laser field, at which the ratio v/c
becomes | v/c |' 1, dΩ being the solid angle integration region corresponding tho the experimental
detector apparatus; here v ≡ −µcεcos(ωt), with µ ≡

√
I/IC, ω the frequency of the field, and ε the

linear-polarization versor: µc/ω is thus the amplitude of the classical electron- oscillations in the
radiation field and µ therefore the corresponding velocity amplitude (in units of c- the speed of light).
The electron-positron pair production under intense laser field with highly charged ions is studied
in the distribution, correlation and propagation direction of the production of electron-positron pair,
which can be analyzed also as anti-correlated. Multiphoton scattering has also been investigated
in [16].

5. Applications for the States with an Almost-Infinite-Expectation-Valued Operators

The optical equivalence principle can be stated, as in [2], at the semiclassical level, within the
framework of the Fock occupation space.

Any quantum-mechanical system can be described over the complex plane by a classical
probability distribution, for which the density operator can be recast as Hermitian, endowed with
a probability distribution function φ non necessarily positive-definite. Such a quantum-mechanical
system can be considered to be consisting of an arbitrary number of states n in the Fock representation.

While for external thermal fields the probability distribution is described as Gaussian, for laser
beams the sequence of Fock states n can be non-trivial. In particular, not all phase-angle sequences
might not have the same weight; this peculiarity leads to the possibility of a non-diagonal density
operator. The calculation of the partition function has to be performed for the sequence of Fock states
n, at the semiclassical description, for the quantum-optics description and for the optical-systems
descriptions, for n the occupation number sequence. In this case, the partition function is calculated
as [2]

ρ(n; n′) ≡ Πλ

∫
d2zλSβφ(z)exp|zλ |2 znλ

λ (z∗λ)n
′
λ√

nλ!n′λ
(7)

This density operator describes therefore a quantum-mechanical system for which the sequence
of the n Fock states can be discontinuous and consisting of states with non-trivial probabilities,
and therefore is not regularly leading to a diagonal density operator, as for a quantum-system.
The density operator in Equation (7) consists therefore of a sequence for the non-trivial Fock
states considered.
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Further Approximations for the Density Operators

It is, therefore, possible to discuss the sequence of expectation values of the density operators
obtained in [1,2] with the sequence obtained for the expressions of the density operators.

In all the approximation here described, it is the purpose of the present Section to show that the
weighting support function S in (7) from [2] therefore satisfies, by definition, the properties

Sλρ(n; n′) ≡ ρ(z; z)[φβ(z)] +O(n; n′; β; λ) (8)

for unbounded observables. It is, therefore, important to compare this result with the implications of
Equation (2). The implications of such an approximation are to be developed within the framework
of almost-infinite-valued-operator eigenstates for extremely high energetic processes, such as those
taking place in the case, such as, but not only, of interactions extremely intense laser-field background,
in highly energetic quantum processes and semiclassical ones, as well as for infinite-momentum
classical states, for which the high-energetic process is the correct suitable phenomenological
experimental approximation , and therefore exhibits the same high-energy limits.

Furthermore, the weighting-support function has the properties to straightforwardly be extended
to the convergence properties in the trace class norm as well through the definition for the orthonormal
basis for the unbounded observables by transitivity, where suitable higher-order corrections are
evaluated as

Sλ {ψk} ≡ {ψk}+O(n; n′; β; λ). (9)

6. Null-Hypersurface Quantization and Laser Systems

High-energy interactions of matter fields with laser beams was analyzed in [17]. Within this frame,
applications for the evaluation of neutrino oscillations have been adduced in [18] The approximation
of high-energy particles as particles with an infinite momentum was proposed and studied in [18,19]
and related literature, such as [19,20], where, in the latter, the renormalization conditions and the
rules for Feymann-graphs-procedure in the limit of an infinite momentum have been exactly stated;
furthermore, massive quantum electrodynamics was formulated in [21]. The renormalizability for
Electrodynamics on null-plane two-dimensional hypersufaces was controlled in [22] and the pertinent
version of the Standard Model was built in [23]. In [24], the production of electron/positron pairs
due to heavy-ions collisions is revised in several energy ranges and approximations. In [25], the main
features of the QED processes in the presence of strong background laser fields are outlined: in
the complete evaluation, the polarisation tensor has to be determined at all orders of the external
momentum, while in the low-energy approximation as electron fields with both a real part and an
imaginary one are found, as crossed fields [25–27].

In the presence of a (superposition of) non-monochromatic laser fields (sources) background,
the main QED processes can be described as after the interaction with infinitely massive (atom)
nuclei [28]. The strong intensity of laser fields also allows for the analysis of external fields [29],
once the other relativistic properties of the matter involved has been sampled. The need for quantum
optical systems can be understood as an improvement for quantum metrology, in those cases, for which
the resolution of the detection apparati is not fully consistent with the quantities and properties
of quantum-matter(-spacetime) systems aims of the experiment, and therefore the experimental
techniques requires different qualities for the measurements devices. The propagation of photons in
intense magnetic fields can allow one to gain insight about the refraction index, for which, at different
energy scales, different photon phenomena can be observed [30,31].

Quantum optical systems might offer, in these cases, [32] the descriptions of the quantum phases
and that that of the possible phase shifts.
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7. More about Semiclassical Optical Systems

As a result, in Relativistic Quantum Field Theory, quantum fields on light-like hyperplanes have
an irreducible the free-field algebra [10]. The algebras for quantized fields with different masses
become unitarily equivalent. The Fock representation space allows for a vacuum state stable, in the
Heisenberg picture, under the interaction Hamiltonian. The 3-dimensional Poincaré transformations
are not defined, but only the Poincaré transformations which leave the hyperplane invariant.

For quantization on null-planes, no vacuum polarization is possible [33]. On a null-plane,
the stability group of a null plane has non-trivial unitary one-dimensional representations: the Lorentz
transformations delineate Wightman functions which are not well defined: the Lorentz transformations
are comprehended in the Poincaré transformations, which contain subsurface terms; the surface
terms are not eliminated, but the one-dimensional quantization operators contain dumping factors,
which outline the definition of the operators. As an application, on null hyper-planes, the average
transverse momentum of the quarks composing mesons [34] is described as with strict constraints in
opposition with the free-quarks model.

For two-dimensional electrodynamics on two-dimensional null-planes, the quantized spin-zero
field on an unquantized background field is investigated. In the presence of an unquantized
background laser field, exact closed-form Volkov solutions are found [35]. Commutation relations and
the vacuum definition are consistent; the wavefunctions are prepared and constructed as L2 functions,
instead of plane waves not defined in a Hilbert space, and can be expressed in the Heisenberg picture.
The infinite-momentum-limit for Lorentz transformations is solved by considering wavepackets which
are valid both outside and outside the two-dimensional laser-beam region.

In [36], condensates in the light-cone Hamiltonian are included, after considering a Gaussian
approximation for the wavefunctions.

For a relativistic three-dimensional two-body equations and for three-body ones [37] on a
null-plane on a null plane, the features of the relativistic Regge formalisms are extrapolated, and the
pertinent phenomenological information are stressed out. Differently from the Schroedinger approach,
the three-body Hamiltonian satisfies cluster separability the for two-body forces; the corresponding
Regge formalism allows one to extract information about three-body mesons, baryons, and quarks
(and the corresponding fields) by the definition of Kernels for the Regge trajectories. In the case of a
two-body system, the kernels for the Regge trajectories are finite, rotationally invariant and satisfy
the proper angular conditions. The formalisms is equivalent to the null-plane constructions, under
suitable assumptions, only if the interaction between the two body are not negligible. In the case of a
three-body system, the kernel satisfies the cluster separability conditions. Both for the two-body case,
the Bethe-Salpeter equations are defined and for the three-body system, the Zero-Range Approximation
holds and allows one to eliminate the unwanted time dependences for the wave equations. The choice
of a proper covariant Hamiltonian ensures that the angular momentum operators, chosen the proper
representation, commute with the suitable kernel.

8. Applications to Optical Systems

Spectral singularities can be studied for the analysis of the behavior of paired photons whose
interaction is ruled by a potential implying such a behavior [38]. The states which exhibit a behaviour
of the wavepackets are described, for which a suitable approximation of the density matrix, such as
those calculated in Section 5, are necessitated.

A simplification of dispersion characterization was proposed in [31] for neural networks in
dispersive media for confrontation with the experimental data by the spectral analysis with respect
to distorted output pulses; in quantum optical system, the discrepancies accepted are to be ascribed
to the interaction of matter with the possible non-flat background metrics, as in [39]. The differences
of a one-channel-input to a two-channel input for the chosen dispersive atomic medium (nonlinear
four-wave mixing in rubidium vapor) are analyzed in the output by the construction of convolutional
neural networks (CNN) for a Ti:Sapphire laser on a beam-splitter, for which the single-peak-center
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output requires no spectral analysis for the centers of the output frequencies through a large range of
test frequencies, while nonlinearities are observed for the non-peak-center frequencies.

Artificial neural networks are analyzed in [40] for the analysis of the intensity profile of distorted
modes, for which the output-center-peaks are with near-zero mean square error indices with respect to
the non-perturbed cases for turbulence corrections at different superpositions of intensities of OAM
modes chosen at given ranges of refractive indices, for example as due to the atmosphere. In particular,
the input Gaussian signal has to be converted in the Gauss-Laguerre output signal. Some features of
the wave-front corrector and of the input-data processing are described in [41].

In [42], the dynamics of cold atomic ensembles is investigated, where the variation of the known
adiabatic solutions of the standard absorption formula

It

I0
= exp

[
OD

γ2/4
∆2 + γ2/4

]
(10)

in magnetic fields of cooling and trapping of neutral atoms devices for better understanding the
effects of perturbations, where OD is the optical depth, γ is the exited-state decay rate, and ∆ is the
probe detuning.

Optical mutations and resonant transitions for many-level atoms were compared in [43] for an
unquantized field theory, and comparisons can be accomplished with the Dirac variation-of-constants
method perturbation theory [44].

8.1. Radiative Effects in Semiclassical Theory

The coincidence rates for the photoelectric effects in photomultipliers devices for the classical
theory and for the semiclassical approach are compared in [45]. The introduction of a Berry topological
phase fermions and for solitons in a magnetic field in chiral gauge field theories is approached in [46].

In [47], the properties of time-symmetric theory of radiation is reviewed. Quantum technologies
are developing as far as the application of control protocols to quantum metrology is extending [48].
Recombination terms for photon-based interferometers are studied in [49] for the use of non-linear
interactions in quantum metrology, for which the signal-to-noise ratio STN reads

STN ≡ BS0

N0[1 + L
N0(1−L) ]

, (11)

with N the photon number experiencing the phase change, B the signal enhancement, L the loss of the
attenuator, and the pedix 0 indicates the values before the attenuator.

Quantum vacuum fluctuations in interferometers and the possible reduction of the phenomenon,
are studied in [50]. The non-relativistic scattering theory admits the same limit of that of
the cross-section, as the quantum constraint Hamiltonian dynamics and quantum field theory
perturbation-expansion approach admits comparable limits for a relativistic quantum scattering
theory [51]. A feedback amplification method for gravitational-wave detectors is used in [52] in
combination with quantum information methods such as entanglement generation and analogue
information processing also for the further sake of creating new quantum machines by means of optical
quantum communication channels and non-reciprocal amplifiers. In an anti-symmetric medium,
for a PT-symmetric coupler consisting of two wavegiudes, there can exist two mechanisms of the
transition from a purely-real to complex one, with splitting of a degenerate semi-simple eigenvalue [38].
Odd-PT couplers and even-PT-symmetric couplers can therefore be compared. Bargman-Fock particle
states of finite norm can be demonstrated to admit local solutions, and asymptotical solutions can be
calculated in particular cases [53] The density of photonic states can be used to probe and analyze
the properties of Minkowski-flat spacetime [54] as a limit for inflationary scenarios by analyzing the
microscopic degrees of freedom bu making use of standard optical tools after the study means of the
diffraction limit of optical imaging, as several Cosmological-Singularity models and the consequent



Computation 2020, 8, 60 8 of 15

thermal evolution history of the Universe can be reproduced.Indeed, in particular ferrofluids, there
can potentially be yet unknown microscopic degrees of freedom, which are nevertheless still limited
by the low-energy scales available at terrestrial experiments and for astronomical observations.

For a a quantum spindensity-wave transition for dynamically generated Landau damping of
spin fluctuations [55] can describe fermionic self-energy. The self-energy of cold fermions and its
scaling as the fermion coupling is weak can be compared with an increasing one by means of the
calculation of the numerical coefficients arising from the data analysis of the optical conductivity of a
two-dimensional metal.

For a field theory of the spin-density wave quantum phase transition in two dimensional
metals [56], where scattering electrons and the spin-density wave. The wave-order parameter allows
one to describe the fermion damping by a full set of composite operators in the corresponding
quantum-optical limit of the related field theory. Optical potentials for the Fadeev equations are
studied in [57]. The terms of the rearrangement scattering are explicitly solved in particular cases.

New designs for high-accuracy photon-number resolving detectors have been proposed in [58]
and related Literature. For gravimeters, the improvements of the measurement results descending
from wave-front aberration has been afforded in [59].

The contributions arising from the presence of an external test mass in atom interferometers can
be pointed out by examining the related terms of the density matrix in the Wigner representation [60].
The numerical calculations for the approximated expressions for the related quantum field theory are
based on the hypothesis of almost-homogeneity for the consequent phase shift.

A moving refractive index medium in presence of a gravitational field [61] exhibits a non-trivial
sequence of emission peaks. The several spectra of spontaneous emissions and the photon-number
correlations are evaluated both for the lab frame and for the co-moving frame. The dispersion
coefficients and the medium dispersions are identified in the spectral analysis.

Quantum technologies exploit entanglement to revolutionize computing, measurements, and
communications. This has stimulated research in different areas of physics to engineer and manipulate
fragile many-particle entangled states. Progress has been particularly rapid for atoms. Thanks to the
large and parameterizable nonlinearities and the well-developed techniques for trapping, controlling,
and counting, many groundbreaking experiments have demonstrated the generation of entangled
states of trapped ions, cold, and ultracold gases of neutral atoms. Moreover, atoms can strongly
couple to external forces and fields, which makes them ideal for ultraprecise sensing and time keeping.
All these factors call for generating nonclassical atomic states designed for phase estimation in atomic
clocks and atom interferometers, exploiting many-body entanglement to increase the sensitivity of
precision measurements.

The parameter estimation in optomechanical-systems experiments can be tested using the
generalized likelihood-ratio test; the assumption of static parameters and that of time-varying
parameters can be compared for the Gauss-Markov model for quantum systems [62].

In [63], the preparation of macroscopic objects as pure quantum-mechanical states is described,
according to the possibility to keep the mechanical degrees of freedom from decoherence caused by
the environment by linearizing the dynamics of in-states and out-states.

In [64], optomechanics experiments concerning optical cavities and mechanical resonators are
revised, where the underlying basics concepts are reviewed in [65].

Photon-pairs sources [9] can provide one with spectrally correlated two-photons states.
The symmetries SU(2) and SU(1, 1) in [66] are examined with respect to the amplification techniques.
The exact superposition of optical fields can be decomposed as a superposition of eigenmodes [67]
whose temporal spectrum is not changes by amplification techniques; in the case of parametric
amplifiers, the analysis of the spectra allows distinguishing the features of the amplification.
In particular, the spectra of two entangled photons can be reconstructed [68].
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In [69], the superposition of multiphoton quantum interference, photons in single spatial modes
can be singled out: the symmetry SU(1, 1) can be outlined, after eliminating non-linear interactions;
the non-linear properties can be sampled in order to consider only the spatial properties of photon pairs.

Non-classical photon statistics alternative to entanglement are studied in [70] for
the implementation of precision measurements in quantum metrology. High-resolution and
remote-measurement for entangled systems are analyzed in [71]. The observation of temporally
entangled photon pairs in their temporal odes can be achieved by a single-valued decomposition of
the spectral modes [68] to study the correlation, or by analyzing the vector field corresponding to the
decomposition [67].

Among the possible control paradigms for fundamental tests of quantum mechanics, the long-time
limit for the error estimation [62] can be formulated theoretically and by numerical methods as with a
power spectrum S(ω)

S(ω) =
C2

(ω−Ω)2 + γ2 (12)

with C a real parameter, Ω is the mechanical resonance frequency, γ the dumping rate.
The quantum correlation of multispatial modes can be examined by means of the experimental

errors due to experimental noise and those due to the attenuation of the experimental apparati,
for which the optimization methods for the analysis are described in [72].

8.2. The Optical Equivalents for Quantum-Mechanical Operators

It is, therefore, now possible to apply the results found for the expressions of sequences of
observables of the unbounded operators such as the density matrix found in the previous investigation
to the calculations of other operators defined in quantum-mechanical systems as far as their optical
equivalent can be needed. For operators A, with weighted density matrix and the spectral component
φR(z) on compact support,

AR ≡
1
π

∫
d2zφR(z) | z >< z | +O(n; n′; β; λ), (13)

respectively, in the projector operator | z >< z |.
The definition of the first-approximation correction orders therefore very importantly depend on

the definition of the parameters β and λ in the definitions of the weighting-support-control function
Sβ and Sλ in Equations (2) and (8), respectively.

The related results are obtained by considering the properties of quantization on null-hypersurface
quantization techniques. The investigation is consistent for systems constituted of intense,
non-monochromatic laser fields. The power spectrum of the operators is therefore decomposed as
a sequence obtained after the majorization of the operators after those of the weighting function.
The power spectrum is therefore not needed to be expressed as a sequence (of majorizations),
where such majorization do not apply to pure states.

In the comparison with the quasi-probability distributions for the density operator for an infinite
momentum which involves the Fock represetnation, infinite-momentum states can be studied as
suitable approximation for states in extremely-high intesity laser fields, whose energy can be compared
as its limit going to infinity. The observables for interaction processes ca be schemtazied withi the
approximation of the expectation values of the density matrix corresponding to the infinite-energy
(momentum) laser fileds, and the corresponding eigenstates. The following remarks are in order, after
the inconveniences evidentiated by [11,73,74].

Pure states ˜rho in the momentum P representaation define observables by measn of the density
operator in the P representation | ψ >< ψ |, whose weight function P(ζ) in the momentum P
representation allows one to classify coherent states and incoherent states in a radiation background
field, according to the properties of the radiation background field. Coherent states are represented by
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a finite number of creation operators, with, as coefficients, arbitrary complex numbers. The weight
functions P̃(ζ) are tempered distributions [11,73].

ρ̃ζ ≡
∫

P(ζ) | ζ >< ζ | d2ζ (14)

with d2ζ a real element of area (even in the complex plane), and coherent states are formedas a finite
number ofcreation operators in the Fock representation. P(ζ) is a linear combination of 2-dimensional
functions f̃ β and of a finite number of its derivatives. An infinitely-energetic P background laser filed
for photons can be interpetes as a superposition of incoherent states, within the due hypotheses.

Density operators in the momentum representations [11] are weighted fucntionals P(ζ), which
define Wigner distribution W(ζ), with W(ζ) continuous and uniformily bounded, as < ζ | ˜ρ | ζ >.
Quasi-probability distributions are expectation values for the corresponding density operator(s).
Integral representations for the density operators can therefore be found. P(ζ) are the expectation
values of Hermitian operator(s), whose eigenvalues are infinite.

For the incoherent states [11], the density matrix ˜̃ρ′ can be rewritten, in a limiting procedure, as a
sum of neighbouring states

˜̃ρ′ ≡ (1− ε̃)ρ̃ + ε̃ρ̃ | ζ >< ζ |;

in the limit 0 < ε < 1, ˜̃ρ′ in the trace-class norm; the corresponding weight functions P′(ζ), which
correspond to the density operators ρ̃′ are tempered distributions only for pure states. Differently,
P(ζ) exhibits singularities not compatible with the form of the momentum P representation. It is
therefore relevant to study a representation of the density operators, in the case of (almost-) infinite
laser background field independent, of the Fock representation.

The discrepancies for quantum states in the power spectrum is expressed for optical systems by
the termsO(n; n′; β; λ), which depend both on the weighting function φ in (2) as well as the (non-equal)
non-trivial weights characterizing the Fock states expressed by the parameters β and λ.

The examination of the power spectrum can be performed also by the Fourier decomposition,
which takes into account the corrections at the proper order. This results ensures therefore to avoid the
mixing and the superpositions of the corrections at different orders also in the Fourier decomposition
of the spectral modes.

8.3. An Example: The Long-Time Limit for the Error Estimation

As an example, the long-time limit for the error estimation Equation (12) can be calculated
exactly as

S(ω) ' 2C2Ω
2Ω4 + 2γ2Ω2 + γ4 ω +

C2

Ω2 + γ2 +O(ω2, Ω2; C2; γ−4) (15)

where the correction term C2

Ω2+γ2 +O(ω2, Ω2; C2; γ−4) consists of a non-trivial summand plus the
corrections due to the other parameters, i.e., C a real parameter, Ω the mechanical resonance frequency,
γ the dumping rate. The Fourier decomposition of the modes corresponding to a systems of an
intense laser beam can be approximated by one containing particles also with infinite momentum on
Minkowski spacetime by means of standard quantization techniques. For the standard quantization
techniques, the polarization tensor is evaluated at all orders (not expanded in Equation (12)).
The peculiarities of intense laser fields, containing particle with very large values of the momentum
but not an infinite momentum, can be ascribed to the properties of semiclassical optical systems,
for which the dimensions of the system are larger than the Planck length, but whose constituents are
of a quantum nature. For particles with very high value of the momentum, such as intense laser field,
the expansion Equation (15), calculated after Equation’s (13) for the intense laser beam modes.
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9. Concluding Remarks

In [75], among the analysis of vacuum polarization for laser fields, the experimental vacuum
space available for the experimental setting allows describing non-laser photon fields by two different
complex refraction indices, differently by the index of refraction characterizing the vacuum polarization
for inhomogeneous magnetic fields, both in the case of the strong-field approximation, and in that for
the weak field approximation [30].

Quantum Electrodynamics in the presence of any external field, i.e., also a laser field, can be
reformulated in terms of the corresponding free Green’s function in presence of the external field [29].

The scattering of partially coherent radiation caused by non-Hermitian structures, such as those
for which PT symmetry is not conserved, with coherent systems is studied in [76].

The spin-Hall effect in topological photonics were reviewed within the framework of topological
insulator as far as the associated orbital angular momentum is concerned [77].

After the analysis of the properties of main laser devices, the implementation of hybrid
interferometers offers further possibilities for the analysis and the spectral sampling, due to
the particular features of the noise analysis, of interest also for the analysis gravitational-wave
detection [49].

For detectors endowed with amplifiers rather than attenuators, it is possible to resolve the
properties of a single photon in the quantum limit by the design of new detectors able to eliminate
additional noise sources, within the specificities off the detector construction features [78].

By means of two optical amplifiers, it is possible to achieve an SU(1, 1) interferometer,
whose focusing properties allow one to separate spatial multimodes within a broad-angle resolution
for quantum metrology, but also in remote sensing, and enable eliminating sub-shot-noises for the sake
of quantum information processing [79,80]. Similar properties are exhibited by fiberoptic nonlinear
interferometers [81].

Atomic ensembles can improve quantum-enhanced metrology for atom interferometers by
collective spin systems and their phase estimations by providing upper bound and lower ones for the
full probability distribution rather than some moments only [82].

The features of unsymmetrized optical potentials, whose states are described within a fully
antisymmetrized Hilbert space, are useful for the study of pole singularities in the resonance structures
for the elastic scattering amplitudes [83].

After the analysis of [84], it is possible to optically resolve in the spectral analysis [61] an optical
analogue to waves under a suitable gravitational field by studying the properties of the refraction index
of the medium by studying positive norm modes and negative-norms ones, useful for the analysis of
exotic cosmological objects as well as classical ones. Quantum systems and their optical analogues can
be investigated also for the description of quantum-gravitation properties of the spacetime close to the
Planck semiclassicalization epoch after the Cosmological Singularity [85].

Via an SU(1, 1) interferometer, the Heisenberg limit of the sensitivity [41,86] can be tested, as well
as the parity properties of the states investigated [87].

It is possible to estimate quantum parameters in optical system via opto-mechanical devices [88],
for which the quantum (Heisenberg) limit [41], given N the total particle number, is calculated by the
precision of parameter estimation for the shot-noise limit is 1/

√
N while the Heisenberg limit is 1/N.

The applications of the Heisenberg limit for the shot-noise valuation have been proposed in [70] for
quantum-information entangled systems.

By numerical calculations, in optomechanical systems, it is possible to estimate the relations of
between the number of macroscopic quantum states and the number of optical photons [89] by the
analysis of the ground state among all the quantum states.

In the converse, [63], in opto-mechanical systems, it is possible to test the relation of macroscopic
objects and pure quantum states after the analysis of the behaviour of the macroscopic objects with
respect to quantum mechanics, for which the guidelines for the statistical analysis are outlined in [65].
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In [90], the application of interferometers to the detection of gravitational waves are described
as far as the improvement for the photon-counting errors and radiation-pressure errors, and the
improvements for the measurement time and the laser power are outlined.

The necessity for these improvements for SU(2) and SU(1, 1) interferometers has been pointed
out in [66], also as far the the number of quanta available for the device, as analyzed in [86].

The systems described in [76], i.e., which do not conserve PT symmetry, can also be affected by
spectral singularities [38].

A geometrical phase for photons [46] can be investigated by cold atoms inside an optical cavity or
in a microwave cavity [91].

Trapped systems are analyzed in [42,92].
The aim of the present paper has been to analyze the possible strcutres related to the equivalence

optical principle without making use of the Fock representations space. Technical advantages of the
implications studied can be outlined in the sistems described in [93] and [94].
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