The Effects of Doping on the Electronic Characteristics and Adsorption Behavior of Silicon Polyprismanes
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Minyaev, R.M.; Minkin, V.I.; Gribanova, T.N.; Starikov, A.G.; Hoffmann, R. Poly[n]Prismanes: A Family of Stable Cage Structures with Half-Planar Carbon Centers. J. Org. Chem. 2003, 68, 8588–8594. [Google Scholar] [CrossRef]
- Lewars, E.G. Modeling Marvels: Computational Anticipation of Novel Molecules; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Katin, K.P.; Grishakov, K.S.; Gimaldinova, M.A.; Maslov, M.M. Silicon rebirth: Ab initio prediction of metallic sp3-hybridized silicon allotropes. Comput. Mater. Sci. 2020, 174, 109480. [Google Scholar] [CrossRef]
- Maslov, M.M.; Grishakov, K.S.; Gimaldinova, M.A.; Katin, K.P. Carbon vs silicon polyprismanes: A comparative study of metallic sp3-hybridized allotropes. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 97–103. [Google Scholar] [CrossRef]
- Katz, T.J.; Acton, N. Synthesis of Prismane. J. Am. Chem. Soc. 1973, 95, 2738–2739. [Google Scholar] [CrossRef]
- Eaton, P.E.; Cole, T.W. Cubane. J. Am. Chem. Soc. 1964, 86, 3157–3158. [Google Scholar] [CrossRef]
- Eaton, P.E.; Or, Y.S.; Branca, S.J. Pentaprismane. J. Am. Chem. Soc. 1981, 103, 2134–2136. [Google Scholar] [CrossRef]
- Matsumoto, H.; Higuchi, K.; Kyushin, S.; Goto, M. Octakis (1,1,2-Trimethylpropyl) Octasilacubane: Synthesis, Molecular Structure, and Unusual Properties. Angew. Chem. Int. Ed. Engl. 1992, 31, 1354–1356. [Google Scholar] [CrossRef]
- Sekiguchi, A.; Yatabe, T.; Kabuto, C.; Sakurai, H. Chemistry of Organosilicon Compounds. 303. The Missing Hexasilaprismane: Synthesis, X-ray Analysis and Photochemical Reactions. J. Am. Chem. Soc. 1993, 115, 5853–5854. [Google Scholar] [CrossRef]
- Koshida, N.; Matsumoto, N. Fabrication and Quantum Properties of Nanostructured Silicon. Mater. Sci. Eng. R 2003, 40, 169–205. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Inoue, S.; Suzuki, T.; Jones, R.O.; Ando, Y. Smallest Carbon Nanotube Is 3 Å in diameter. Phys. Rev. Lett. 2004, 92, 125502. [Google Scholar] [CrossRef]
- Kuzmin, S.; Duley, W.W. Ab Initio Calculations of Some Electronic and Vibrational Properties of Molecules Based on Multi-Layered Stacks of Cyclic C6. Fuller. Nanotub. Carbon Nanostruct. 2012, 20, 730–736. [Google Scholar] [CrossRef]
- Cheung, C.L.; Hafner, J.H.; Lieber, C.M. Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. PNAS 2000, 97, 3809–3813. [Google Scholar] [CrossRef]
- Zhang, Z.; Cho, K. Ab initio study of hydrogen interaction with pure and nitrogen-doped carbon nanotubes. Phys. Rev. B 2007, 75, 075420. [Google Scholar] [CrossRef]
- Kang, K.Y.; Lee, B.I.; Lee, J.S. Hydrogen adsorption on nitrogen-doped carbon xerogels. Carbon 2009, 47, 1171. [Google Scholar] [CrossRef]
- Dolinskii, I.Y.; Katin, K.P.; Grishakov, K.S.; Prudkovskii, V.S.; Kargin, N.I.; Maslov, M.M. Influence of Mechanical Stretching on Adsorption Properties of Nitrogen-Doped Graphene. Phys. Solid State 2018, 60, 821–825. [Google Scholar] [CrossRef]
- Dolinskii, I.Y.; Grishakov, K.S.; Prudkovskii, V.S. Effect of a Nitrogen Doping and a Mechanical Stress on the Adsorption Capacity of Graphdiene. Phys. Solid State 2019, 61, 274–278. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef]
- Dal Corso, A. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 2014, 95, 337–350. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Methfessel, M.; Paxton, A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621. [Google Scholar] [CrossRef] [PubMed]
- Hehre, W.J.; Radom, L.; Schleyer, P.V.R.; Pople, J.A. Ab Initio Molecular Orbital Theory; Wiley-Interscience: New York, NY, USA, 1986. [Google Scholar]
- Hehre, W.J.; Ditchfield, R.; Radom, L.; Pople, J.A. Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. J. Am. Chem. Soc. 1970, 92, 4796. [Google Scholar] [CrossRef]
- Dolgonos, G.A.; Mekalka, K. Strain in Nonclassical Silicon Hydrides: An Insight into the “Ultrastability” of Sila-bi[6]Prismane (Si18H12) Cluster with the Endohedrally Trapped Silicon Atom, Si19H12. J. Comp. Chem. 2015, 36, 2095–2102. [Google Scholar] [CrossRef] [PubMed]
Structure | Si5 Prismane | C-doped Si5 | B-doped Si5 | Si6 Prismane | C-doped Si6 | B-doped Si6 |
---|---|---|---|---|---|---|
Eb, eV/atom | −4.622 | −4.793 | −4.673 | −4.605 | −4.744 | −4.645 |
Structure | Homodesmic Reaction | SE, eV |
---|---|---|
Si5-prismane | Si5-prismane → 10⋅Si2-diamond | 13.849 |
C-doped Si5-prismane | C-doped Si5-prismane→ 9⋅Si2-diamond + SiC | 14.649 |
B-doped Si5-prismane | 2⋅(B-doped Si5-prismane) → 18⋅Si2-diamond + Si2B2 | 13.373 |
Si6-prismane | Si6-prismane → 12⋅Si2-diamond | 17.015 |
C-doped Si6-prismane | C-doped Si6-prismane→ 11⋅Si2-diamond + SiC | 17.899 |
B-doped Si6-prismane | 2⋅(B-doped Si6-prismane) → 22⋅Si2-diamond + Si2B2 | 16.616 |
Structure | C-doped Si5 | B-doped Si5 | ||||
---|---|---|---|---|---|---|
Hydrogen position | 1 | 2 | 3 | 1 | 2 | 3 |
Eads, eV | −3.931 | −3.998 | −3.9 | −4.121 | −3.658 | −3.395 |
Structure | C-doped Si6 | B-doped Si6 | ||||
Hydrogen position | 1 | 2 | 3 | 1 | 2 | 3 |
Eads, eV | −4.252 | −4.131 | −4.774 | −3.721 | −3.688 | −3.457 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grishakov, K.; Katin, K.; Maslov, M. The Effects of Doping on the Electronic Characteristics and Adsorption Behavior of Silicon Polyprismanes. Computation 2020, 8, 25. https://doi.org/10.3390/computation8020025
Grishakov K, Katin K, Maslov M. The Effects of Doping on the Electronic Characteristics and Adsorption Behavior of Silicon Polyprismanes. Computation. 2020; 8(2):25. https://doi.org/10.3390/computation8020025
Chicago/Turabian StyleGrishakov, Konstantin, Konstantin Katin, and Mikhail Maslov. 2020. "The Effects of Doping on the Electronic Characteristics and Adsorption Behavior of Silicon Polyprismanes" Computation 8, no. 2: 25. https://doi.org/10.3390/computation8020025
APA StyleGrishakov, K., Katin, K., & Maslov, M. (2020). The Effects of Doping on the Electronic Characteristics and Adsorption Behavior of Silicon Polyprismanes. Computation, 8(2), 25. https://doi.org/10.3390/computation8020025