The Effects of Doping on the Electronic Characteristics and Adsorption Behavior of Silicon Polyprismanes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Minyaev, R.M.; Minkin, V.I.; Gribanova, T.N.; Starikov, A.G.; Hoffmann, R. Poly[n]Prismanes: A Family of Stable Cage Structures with Half-Planar Carbon Centers. J. Org. Chem. 2003, 68, 8588–8594. [Google Scholar] [CrossRef]
- Lewars, E.G. Modeling Marvels: Computational Anticipation of Novel Molecules; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Katin, K.P.; Grishakov, K.S.; Gimaldinova, M.A.; Maslov, M.M. Silicon rebirth: Ab initio prediction of metallic sp3-hybridized silicon allotropes. Comput. Mater. Sci. 2020, 174, 109480. [Google Scholar] [CrossRef]
- Maslov, M.M.; Grishakov, K.S.; Gimaldinova, M.A.; Katin, K.P. Carbon vs silicon polyprismanes: A comparative study of metallic sp3-hybridized allotropes. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 97–103. [Google Scholar] [CrossRef]
- Katz, T.J.; Acton, N. Synthesis of Prismane. J. Am. Chem. Soc. 1973, 95, 2738–2739. [Google Scholar] [CrossRef]
- Eaton, P.E.; Cole, T.W. Cubane. J. Am. Chem. Soc. 1964, 86, 3157–3158. [Google Scholar] [CrossRef]
- Eaton, P.E.; Or, Y.S.; Branca, S.J. Pentaprismane. J. Am. Chem. Soc. 1981, 103, 2134–2136. [Google Scholar] [CrossRef]
- Matsumoto, H.; Higuchi, K.; Kyushin, S.; Goto, M. Octakis (1,1,2-Trimethylpropyl) Octasilacubane: Synthesis, Molecular Structure, and Unusual Properties. Angew. Chem. Int. Ed. Engl. 1992, 31, 1354–1356. [Google Scholar] [CrossRef]
- Sekiguchi, A.; Yatabe, T.; Kabuto, C.; Sakurai, H. Chemistry of Organosilicon Compounds. 303. The Missing Hexasilaprismane: Synthesis, X-ray Analysis and Photochemical Reactions. J. Am. Chem. Soc. 1993, 115, 5853–5854. [Google Scholar] [CrossRef]
- Koshida, N.; Matsumoto, N. Fabrication and Quantum Properties of Nanostructured Silicon. Mater. Sci. Eng. R 2003, 40, 169–205. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Inoue, S.; Suzuki, T.; Jones, R.O.; Ando, Y. Smallest Carbon Nanotube Is 3 Å in diameter. Phys. Rev. Lett. 2004, 92, 125502. [Google Scholar] [CrossRef] [Green Version]
- Kuzmin, S.; Duley, W.W. Ab Initio Calculations of Some Electronic and Vibrational Properties of Molecules Based on Multi-Layered Stacks of Cyclic C6. Fuller. Nanotub. Carbon Nanostruct. 2012, 20, 730–736. [Google Scholar] [CrossRef]
- Cheung, C.L.; Hafner, J.H.; Lieber, C.M. Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. PNAS 2000, 97, 3809–3813. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Cho, K. Ab initio study of hydrogen interaction with pure and nitrogen-doped carbon nanotubes. Phys. Rev. B 2007, 75, 075420. [Google Scholar] [CrossRef]
- Kang, K.Y.; Lee, B.I.; Lee, J.S. Hydrogen adsorption on nitrogen-doped carbon xerogels. Carbon 2009, 47, 1171. [Google Scholar] [CrossRef]
- Dolinskii, I.Y.; Katin, K.P.; Grishakov, K.S.; Prudkovskii, V.S.; Kargin, N.I.; Maslov, M.M. Influence of Mechanical Stretching on Adsorption Properties of Nitrogen-Doped Graphene. Phys. Solid State 2018, 60, 821–825. [Google Scholar] [CrossRef]
- Dolinskii, I.Y.; Grishakov, K.S.; Prudkovskii, V.S. Effect of a Nitrogen Doping and a Mechanical Stress on the Adsorption Capacity of Graphdiene. Phys. Solid State 2019, 61, 274–278. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [Green Version]
- Dal Corso, A. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 2014, 95, 337–350. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Methfessel, M.; Paxton, A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hehre, W.J.; Radom, L.; Schleyer, P.V.R.; Pople, J.A. Ab Initio Molecular Orbital Theory; Wiley-Interscience: New York, NY, USA, 1986. [Google Scholar]
- Hehre, W.J.; Ditchfield, R.; Radom, L.; Pople, J.A. Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. J. Am. Chem. Soc. 1970, 92, 4796. [Google Scholar] [CrossRef]
- Dolgonos, G.A.; Mekalka, K. Strain in Nonclassical Silicon Hydrides: An Insight into the “Ultrastability” of Sila-bi[6]Prismane (Si18H12) Cluster with the Endohedrally Trapped Silicon Atom, Si19H12. J. Comp. Chem. 2015, 36, 2095–2102. [Google Scholar] [CrossRef] [PubMed]
Structure | Si5 Prismane | C-doped Si5 | B-doped Si5 | Si6 Prismane | C-doped Si6 | B-doped Si6 |
---|---|---|---|---|---|---|
Eb, eV/atom | −4.622 | −4.793 | −4.673 | −4.605 | −4.744 | −4.645 |
Structure | Homodesmic Reaction | SE, eV |
---|---|---|
Si5-prismane | Si5-prismane → 10⋅Si2-diamond | 13.849 |
C-doped Si5-prismane | C-doped Si5-prismane→ 9⋅Si2-diamond + SiC | 14.649 |
B-doped Si5-prismane | 2⋅(B-doped Si5-prismane) → 18⋅Si2-diamond + Si2B2 | 13.373 |
Si6-prismane | Si6-prismane → 12⋅Si2-diamond | 17.015 |
C-doped Si6-prismane | C-doped Si6-prismane→ 11⋅Si2-diamond + SiC | 17.899 |
B-doped Si6-prismane | 2⋅(B-doped Si6-prismane) → 22⋅Si2-diamond + Si2B2 | 16.616 |
Structure | C-doped Si5 | B-doped Si5 | ||||
---|---|---|---|---|---|---|
Hydrogen position | 1 | 2 | 3 | 1 | 2 | 3 |
Eads, eV | −3.931 | −3.998 | −3.9 | −4.121 | −3.658 | −3.395 |
Structure | C-doped Si6 | B-doped Si6 | ||||
Hydrogen position | 1 | 2 | 3 | 1 | 2 | 3 |
Eads, eV | −4.252 | −4.131 | −4.774 | −3.721 | −3.688 | −3.457 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grishakov, K.; Katin, K.; Maslov, M. The Effects of Doping on the Electronic Characteristics and Adsorption Behavior of Silicon Polyprismanes. Computation 2020, 8, 25. https://doi.org/10.3390/computation8020025
Grishakov K, Katin K, Maslov M. The Effects of Doping on the Electronic Characteristics and Adsorption Behavior of Silicon Polyprismanes. Computation. 2020; 8(2):25. https://doi.org/10.3390/computation8020025
Chicago/Turabian StyleGrishakov, Konstantin, Konstantin Katin, and Mikhail Maslov. 2020. "The Effects of Doping on the Electronic Characteristics and Adsorption Behavior of Silicon Polyprismanes" Computation 8, no. 2: 25. https://doi.org/10.3390/computation8020025
APA StyleGrishakov, K., Katin, K., & Maslov, M. (2020). The Effects of Doping on the Electronic Characteristics and Adsorption Behavior of Silicon Polyprismanes. Computation, 8(2), 25. https://doi.org/10.3390/computation8020025