Some New Results on Coincidence Points for Multivalued Suzuki-Type Mappings in Fairly Complete Spaces
Abstract
:1. Introduction and Preliminaries
- A cyclically Cauchy sequence if there exists a natural number N such that
- A fairly Cauchy sequence if the following conditions are satisfied
- (1)
- is a cyclically Cauchy sequence,
- (2)
- and are Cauchy sequences,
2. Main Results
3. Suzuki-Type Modified Proximal Contractive Mapping
4. Some Results Related to Partially Ordered Metric Space
- is metric on
- ⪯ is partial order on Y.
- Ordered Suzuki-type generalized proximal contraction if
- Ordered Suzuki-type modified proximal contraction if
5. Application to Fixed-Point Theory
- Suzuki-type generalized contraction if
- Suzuki-type modified contraction if
- Ordered Suzuki-type generalized contraction if
- Ordered Suzuki-type modified contraction if
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Saleem, N.; Abbas, M.; Raza, Z. Fixed Fuzzy Point Results of Generalized Suzuki type F-contraction Mappings in Ordered Metric Spaces. Available online: https://www.researchgate.net/publication/321411875_Fixed_fuzzy_point_results_of_generalized_Suzuki_type_F-contraction_mappings_in_ordered_metric_spaces (accessed on 16 March 2020).
- Saleem, N.; Abbas, M.; Ali, B.; Raza, Z. Fixed points of Suzuki type generalized multivalued mappings in fuzzy metric spaces with applications. Fixed Point Theory Appl. 2015, 1, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ciric, L. Some Recent Results in Metrical Fixed Point Theory. Available online: https://carma.newcastle.edu.au/resources/jon/Preprints/Papers/CAT(0)/Papers/kirk07.pdf (accessed on 16 March 2020).
- Todorcevic, V. Harmonic Quasiconformal Mappings and Hyper-bolic Type Metrics. Available online: https://www.springer.com/gp/book/9783030225902 (accessed on 16 March 2020).
- Sen, M.; Abbas, M.; Saleem, N. On optimal fuzzy best proximity coincidence points of proximal contractions involving cyclic mappings in non-Archimedean fuzzy metric spaces. Mathematics 2017, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Saleem, N.; De la Sen, M. Optimal coincidence point results in partially ordered non-Archimedean fuzzy metric spaces. Fixed Point Theory Appl. 2016, 1, 44. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Saleem, N.; Sohail, K. Optimal coincidence best approximation solution in b-fuzzy metric spaces. Commun. Nonlinear Anal. 2019, 6, 1–12. [Google Scholar]
- Raza, Z.; Saleem, N.; Abbas, M. Optimal coincidence points of proximal quasi-contraction mappings in non-Archimedean fuzzy metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 3787–3801. [Google Scholar] [CrossRef] [Green Version]
- Shatanawi, W.; Mitrovic, Z.; Hussain, N.; Radenovic, S. On Generalized Hardy-Rogers type α-admissible mapping in cone b-metric spaces over Banach algebras. Symmetry 2020, 21, 81. [Google Scholar] [CrossRef] [Green Version]
- Abodayeh, K.; Shatanawi, W. Common fixed point for mappings under contractive condition based on almost perfect functions and α-admissibility. Nonlinear Funct. Anal. Appl. 2018, 23, 247–257. [Google Scholar]
- Saleem, N.; Abbas, M.; Raza, Z. Optimal coincidence best approximation solution in non-Archimedean fuzzy metric spaces. Iran. J. Fuzzy Syst. 2016, 13, 113–124. [Google Scholar]
- Berinde, V. Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. 2004, 9, 43–53. [Google Scholar]
- Suzuki, T. A new type of fixed point theorem in metric spaces. Nonlinear Anal. 2004, 7, 5313–5317. [Google Scholar] [CrossRef]
- Gabeleh, M. Best proximity point theorems for single and set-valued non-self mappings. Acta Math. Sci. 2014, 34, 1661–1669. [Google Scholar] [CrossRef]
- Basha, S. Best proximity point theorems in the frameworks of fairly and proximally complete spaces. J. Fixed Point Theory Appl. 2017, 19, 1939–1951. [Google Scholar] [CrossRef]
- Raj, V.S. A best proximity theorem for weakly contractive non-self mappings. Nonlinear Anal. 2011, 74, 4804–4808. [Google Scholar]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Jleli, M.; Karapinar, E.; Samet, B. Best Proximity Points for Generalized α-ψ-proximal Contractive Type Mappings. Available online: https://www.hindawi.com/journals/jam/2013/534127/ (accessed on 16 March 2020).
- Saleem, N.; Abbas, M.; Mohsin, B.B.; Radenovic, S. Pata type best proximity point results in metric spaces. Mathematics 2019, 7, 1017. [Google Scholar] [CrossRef] [Green Version]
- Rockafellar, T.R.; Wets, R.J.V. Variational Analysis; Springer: Berlin, Germany, 2005. [Google Scholar]
- Basha, S. Best proximity point theorems on partially ordered sets. Optim. Lett. 2013, 7, 1035–1043. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, N.; Habib, I.; Sen, M.D.l. Some New Results on Coincidence Points for Multivalued Suzuki-Type Mappings in Fairly Complete Spaces. Computation 2020, 8, 17. https://doi.org/10.3390/computation8010017
Saleem N, Habib I, Sen MDl. Some New Results on Coincidence Points for Multivalued Suzuki-Type Mappings in Fairly Complete Spaces. Computation. 2020; 8(1):17. https://doi.org/10.3390/computation8010017
Chicago/Turabian StyleSaleem, Naeem, Iqra Habib, and Manuel De la Sen. 2020. "Some New Results on Coincidence Points for Multivalued Suzuki-Type Mappings in Fairly Complete Spaces" Computation 8, no. 1: 17. https://doi.org/10.3390/computation8010017
APA StyleSaleem, N., Habib, I., & Sen, M. D. l. (2020). Some New Results on Coincidence Points for Multivalued Suzuki-Type Mappings in Fairly Complete Spaces. Computation, 8(1), 17. https://doi.org/10.3390/computation8010017