Emerging DFT Methods and Their Importance for Challenging Molecular Systems with Orbital Degeneracy
Abstract
:1. Introduction
2. Beyond a Hybrid Functional in DFT
3. Summary of Some Emerging DFT Methods
- Finite-Temperature DFT (FT-DFT)
- Orbital-Optimized DFT (OO-DFT)
- Range-Separated eXchange DFT (RSX-DFT)
- Multiconfigurational Pair-DFT (MC-PDFT)
- Fermi-Löwdin Orbital Self-Interaction Corrected DFT (FLOSIC-DFT)
4. Some Illustrative Cases
5. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Hansen, A.; Brandenburg, J.G.; Bannwarth, C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116, 5105–5154. [Google Scholar] [CrossRef] [Green Version]
- Kossmann, S.; Neese, F. Comparison of two efficient approximate Hartee–Fock approaches. Chem. Phys. Lett. 2009, 48, 240–243. [Google Scholar] [CrossRef]
- Brandenburg, J.G.; Bannwarth, C.; Hansen, A.; Grimme, S. B97-3c: A revised low-cost variant of the B97-D density functional method. J. Chem. Phys. 2018, 148, 064104. [Google Scholar] [CrossRef]
- Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. [Google Scholar] [CrossRef]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef]
- Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013, 139, 134101. [Google Scholar] [CrossRef]
- Guo, Y.; Sivalingam, K.; Valeev, E.F.; Neese, F. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory. J. Chem. Phys. 2016, 144, 094111. [Google Scholar] [CrossRef]
- Moscardó, F.; San-Fabián, E. Density-functional formalism and the two-body problem. Phys. Rev. A 1991, 44, 1549–1553. [Google Scholar] [CrossRef]
- Sancho-García, J.C.; Moscardó, F. Usefulness of the Colle-Salvetti model for the treatment of the non-dynamical correlation. J. Chem. Phys. 2003, 118, 1054–1058. [Google Scholar] [CrossRef]
- Maier, T.M.; Arbuznikov, A.V.; Kaupp, M. Local hybrid functionals: Theory, implementation, and performance of an emerging new tool in quantum chemistry and beyond. WIREs Comput. Mol. Sci. 2019, 9, e1378. [Google Scholar] [CrossRef]
- Maier, T.M.; Hassler, M.; Arbuznikov, A.V.; Kaupp, M. New approaches for the calibration of exchange-energy densities in local hybrid functionals. Phys. Chem. Chem. Phys. 2016, 31, 21133–21144. [Google Scholar] [CrossRef]
- Goerigk, L.; Grimme, S. Double-hybrid density functionals. WIREs Comput. Mol. Sci. 2014, 4, 576–600. [Google Scholar] [CrossRef]
- Brémond, É.; Ciofini, I.; Sancho-García, J.C.; Adamo, C. Nonempirical double-hybrid functionals: An effective tool for chemists. Acc. Chem. Res. 2016, 49, 1503–1513. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. WIREs: Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Shao, Y.; Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A.T.; Wormit, M.; Kussmann, J.; Lange, A.W.; Behn, A.; Deng, J.; et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol Phys. 2015, 113, 184–215. [Google Scholar] [CrossRef]
- Fdez, I.G.; Vacher, M.; Alavi, A.; Angeli, C.; Aquilante, F.; Autschbach, J.; Bao, J.J.; Bokarev, S.I.; Bogdanov, N.A.; Carlson, R.K.; et al. OpenMolcas: From source code to insight. J. Chem. Theory Comput. 2019. [Google Scholar] [CrossRef]
- Bao, J.L.; Gagliardi, L.; Truhlar, D.G. Self-interaction error in density functional theory: An appraisal. J. Phys. Chem. Lett. 2018, 9, 2353–2358. [Google Scholar] [CrossRef]
- Chai, J.-D. Density functional theory with fractional orbital occupations. J. Chem. Phys. 2012, 136, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Hansen, A. A Practicable Real-Space Measure and Visualization of Static Electron-Correlation Effects. Angew. Chem. Int. Ed. 2015, 54, 12308–12313. [Google Scholar] [CrossRef]
- Bauer, C.A.; Hansen, A.; Grimme, S. The frational occupation number weighted density as a versatile analysis tool for molecules with a complicated electronic structure. Chem.: Eur. J. 2017, 23, 6150–6164. [Google Scholar] [CrossRef]
- Pérez-Guardiola, A.; Sandoval-Salinas, M.E.; Casanova, D.; San-Fabián, E.; Pérez-Jiménez, A.J.; Sancho-García, J.C. The role of topology in organic molecules: Origin and comparison of the radical character in linear and cyclic oligoacenes and related oligomers. Phys. Chem. Chem. Phys. 2018, 20, 7112–7124. [Google Scholar] [CrossRef]
- Pérez-Guardiola, A.; Ortiz-Cano, R.; Sandoval-Salinas, M.E.; Fernández-Rossier, J.; Casanova, D.; Pérez-Jiménez, A.J.; Sancho-García, J.C. From cyclic nanorings to single-walled carbon nanotubes: Disclosing the evolution of their electronic structure with the help of theoretical methods. Phys. Chem. Chem. Phys. 2019, 21, 2547–2557. [Google Scholar] [CrossRef]
- Seenithurai, S.; Chai, J.D. Electronic and hydrogen storage properties of Li-terminated linear boron chains studied by TAO-DFT. Sci. Rep. 2018, 8, 13538. [Google Scholar] [CrossRef]
- Chung, J.H.; Chai, J.D. Electronic properties of möbius cyclacenes studied by Thermally-Assisted-Occupation Density Functional Theory. Sci. Rep. 2019, 9, 2907. [Google Scholar] [CrossRef]
- Seenithurai, S.; Chai, J.D. Electronic properties of linear and cyclic boron nanoribbons from Thermally-Assisted-Occupation Density Functional Theory. Sci. Rep. 2019, 9, 12139. [Google Scholar] [CrossRef]
- Dohm, S.; Hansen, A.; Steinmetz, M.; Grimme, S.; Checinski, M.P. Comprehensive thermochemical benchmark set of realistic closed-shell metal organic reactions. J. Chem. Theory Comput. 2018, 14, 2596–2607. [Google Scholar] [CrossRef]
- Peverati, R.; Head-Gordon, M. Orbital optimized double-hybrid density functionals. J. Chem. Phys. 2013, 139, 024110. [Google Scholar] [CrossRef]
- Sancho-García, J.C.; Pérez-Jiménez, A.J.; Savarese, M.; Brémond, E.; Adamo, C. Importance of orbital optimization for double-hybrid density functionals: Application of the OO-PBE-QIDH model for closed- and open-shell systems. J. Phys. Chem. A 2016, 120, 1756–1762. [Google Scholar] [CrossRef]
- Bozkaya, U.; Turney, J.M.; Yamaguchi, Y.; Schaefer III, H.F.; Sherrill, C.D. Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory. J. Chem. Phys. 2011, 135, 104103. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Brémond, E.; Pérez-Jiménez, A.J.; Sancho-García, J.C.; Adamo, C. Range-separated hybrid density functionals made simple. J. Chem. Phys. 2019, 150, 201102. [Google Scholar] [CrossRef] [Green Version]
- Gagliardi, L.; Truhlar, D.G.; Li Manni, G.; Carlson, R.K.; Hoyer, C.E.; Bao, J.L. Multiconfiguration pair-density functional theory: A new way to treat strongly correlated systems. Acc. Chem. Res. 2017, 50, 66–73. [Google Scholar] [CrossRef]
- Bao, J.J.; Dong, S.S.; Gagliardi, L.; Truhlar, D.G. Automatic selection of an active space for calculating electronic excitation spectra by MS-CASPT2 or MC-PDFT. J. Chem. Theory Comput. 2018, 14, 2017–2025. [Google Scholar] [CrossRef]
- Sand, A.M.; Hoyer, C.D.; Sharkas, K.; Kidder, K.M.; Lindh, R.; Truhlar, D.G.; Gagliardi, L. Analytic gradients for complete active space pair-Density Functional Theory. J. Chem. Theory Comput. 2018, 14, 126–138. [Google Scholar] [CrossRef]
- Moscardó, F.; San-Fabián, E. A density functional for the correlation energy, deduced in the framework of the correlation factor approach. Int. J. Quantum Chem. 1991, 40, 23–32. [Google Scholar] [CrossRef]
- Becke, A.D.; Savin, A.; Stoll, H. Extension of the local-spin-density exchange-correlation approximation to multiplet states. Theor. Chem. Acta 1995, 91, 147–156. [Google Scholar] [CrossRef]
- Burke, K.; Perdew, J.P.; Ernzerhof, M. Extension of the local-spin-density exchange-correlation approximation to multiplet states. J. Chem. Phys. 1998, 109, 3760–3771. [Google Scholar] [CrossRef]
- Sharkas, K.; Li, L.; Trepte, K.; Withanage, K.P.K.; Joshi, R.P.; Zope, R.R.; Baruah, T.; Johnson, J.K.; Jackson, K.A.; Peralta, J.E. Shrinking self-interaction errors with the Fermi-Löwdin orbital self-interaction corrected density functional approximation. J. Phys. Chem. A 2018, 122, 9307. [Google Scholar] [CrossRef]
- Trepte, K.; Schwalbe, S.; Hahn, T.; Kortus, J.; Kao, D.-y.; Yamamoto, Y.; Baruah, T.; Zope, R.R.; Withanage, K.P.K.; Peralta, J.E.; et al. Analytic Atomic Gradients in the Fermi- Löwdin obital self-interaction correction. J. Comp. Chem. 2019, 40, 820–825. [Google Scholar] [CrossRef]
- Görling, A. Hierarchies of methods towards the exact Kohn-Sham correlation energy based on the adiabatic-connection fluctuation-dissipation theorem. Phys. Rev. B 2019, 99, 235120. [Google Scholar] [CrossRef]
- Filatov, M. Spin-restricted ensemble-referenced Kohn–Sham method: Basic principles and application to strongly correlated ground and excited states of molecules. Wires Comp. Mol. Sci. 2015, 5, 146–167. [Google Scholar] [CrossRef]
- Pernal, K.; Giesbertz, K.J. Reduced Density Matrix Functional Theory (RDMFT) and Linear Response Time-Dependent RDMFT (TD-RDMFT). Top. Curr. Chem. 2016, 368, 125–183. [Google Scholar]
- Sharma, P.; Bernales, V.; Knecht, S.; Truhlar, D.G.; Gagliardi, L. Density matrix renormalization group pair-density functional theory (DMRG-PDFT): Singlet−triplet gaps in polyacenes and polyacetylenes. Chem. Sci. 2019, 10, 1716–1723. [Google Scholar] [CrossRef]
- Marian, C.M.; Heil, A.; Kleinschmidt, M. The DFT/MRCI method. WIREs Comput. Mol. Sci. 2019, 9, e1394. [Google Scholar] [CrossRef]
- Krylov, A.I. Size-consistent wave functions for bond-breaking: The equation-of-motion spin-flip model. Chem. Phys. Lett. 2001, 338, 375–384. [Google Scholar] [CrossRef]
- Canola, S.; Casado, J.; Negri, F. The double exciton state of conjugated chromophores with strong diradical character: Insights from TDDFT calculations. Phys. Chem. Chem. Phys. 2018, 20, 24227–24238. [Google Scholar] [CrossRef]
- Su, N.Q.; Li, C.; Yang, W. Describing strong correlation with fractional-spin correction in density functional theory. Proc. Natl. Acad. Sci. USA 2018, 115, 9678–9683. [Google Scholar] [CrossRef] [Green Version]
- Christensen, A.S.; Faber, F.A.; von Lilienfeld, O.A. Operators in quantum machine learning: Response properties in chemical space. J. Chem. Phys. 2019, 150, 064105. [Google Scholar] [CrossRef]
- Laplaza, R.; Polo, V.; Contreras-García, J. Localizing electron density errors in density functional theory. Phys. Chem. Chem. Phys. 2019, 21, 20927–20938. [Google Scholar] [CrossRef]
- Sancho-García, J.C.; Pittner, J.; Čársky, P.; Hubač, I. Multireference coupled-cluster calculations on the energy of activation in the automerization of cyclobutadiene: Assessment of the state-specific multireference Brillouin–Wigner theory. J. Chem. Phys. 2000, 112, 8785–8788. [Google Scholar] [CrossRef]
- Bhaskaran-Nair, K.; Demel, O.; Pittner, J. Multireference state-specific Mukherjee’s coupled cluster method with noniterative triexcitations. J. Chem. Phys. 2008, 129, 184105. [Google Scholar] [CrossRef]
- Sancho-García, J.C.; Pérez-Jiménez, A.J.; Moscardó, F. A comparison between DFT and other ab initio schemes on the activation energy in the automerization of cyclobutadiene. Chem. Phys. Lett. 2000, 317, 245–251. [Google Scholar] [CrossRef]
- Pavliček, N.; Mistry, A.; Majzik, Z.; Moll, N.; Meyer, G.; Fox, D.J.; Gross, L. Synthesis and characterization of triangulene. Nat. Nanotech. 2017, 12, 308–311. [Google Scholar] [CrossRef]
- Ovchinnikov, A.A. Multiplicity of the Ground State of Large Alternant Organic Molecules with Conjugated Bonds. Theor. Chem. Acc. 1978, 47, 297–304. [Google Scholar] [CrossRef]
- Das, A.; Müller, T.; Plasser, F.; Lischka, H. Polyradical Character of Triangular Non-Kekule Structures, Zethrenes, p-Quinodimethane-Linked Bisphenalenyl, and the Clar Goblet in Comparison: An Extended Multireference Study. J. Phys. Chem. A 2016, 120, 1625–1636. [Google Scholar] [CrossRef]
- Melle-Franco, M. Uthrene, a radically new molecule? Chem. Commun. 2015, 51, 5387–5390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soda, T.; Kitagawa, Y.; Onishi, T.; Takano, Y.; Shigeta, Y.; Nagao, H.; Yoshioka, Y.; Yamaguchi, K. Ab initio computations of effective exchange integrals for H-H, H-He-H and Mn2O2 complex: Comparison of broken-symmetry approaches. Chem. Phys. Lett. 2000, 319, 223–230. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
San-Fabián Maroto, E.; Sancho-García, J.-C. Emerging DFT Methods and Their Importance for Challenging Molecular Systems with Orbital Degeneracy. Computation 2019, 7, 62. https://doi.org/10.3390/computation7040062
San-Fabián Maroto E, Sancho-García J-C. Emerging DFT Methods and Their Importance for Challenging Molecular Systems with Orbital Degeneracy. Computation. 2019; 7(4):62. https://doi.org/10.3390/computation7040062
Chicago/Turabian StyleSan-Fabián Maroto, Emilio, and Juan-Carlos Sancho-García. 2019. "Emerging DFT Methods and Their Importance for Challenging Molecular Systems with Orbital Degeneracy" Computation 7, no. 4: 62. https://doi.org/10.3390/computation7040062
APA StyleSan-Fabián Maroto, E., & Sancho-García, J. -C. (2019). Emerging DFT Methods and Their Importance for Challenging Molecular Systems with Orbital Degeneracy. Computation, 7(4), 62. https://doi.org/10.3390/computation7040062