The Role of Dimensionality in Understanding Granuloma Formation
Abstract
:1. Introduction
Previous Studies on 2D/3D
2. Methods
2.1. GranSim Description: Biology and Implementation
2.1.1. GranSim: Brief Immunology Background
2.1.2. GranSim: Implementation and High-Performance Computing
This pseudocode is about retrieving cell density information to use for diffusion of TNF, IL10, and the 3 chemokines. We use the C++ concept of an iterator to define grid iterators that have the same syntax for 2D and 3D. Since the syntax is the same, model code that iterates over the grid, or portions of it, is the same regardless of dimension. | |
2D specific: { GrGrid& g = _grid.getGrid(); Pos p; Pos dim = g.getRange(); for (p.x = 0; p.x<dim.x; p.x++) { for (p.y = 0; p.y<dim.y; p.y++) { g.nCells(p) = g.getCellDensity(p); }}} | 3D specific: { GrGrid& g = _grid.getGrid(); Pos p; Pos dim = g.getRange(); for (p.x = 0; p.x<dim.x; p.x++) { for (p.y = 0; p.y<dim.y; p.y++) { for (p.z = 0; p.z<dim.z; p.z++) { g.nCells(p) = g.getCellDensity(p); }}}} |
Dimension independent: Get cell density information to use for diffusion { GrGrid& g = _grid.getGrid(); constPos& dim = g.getRange(); GridSpec::EntireGridIteratoregi = GridSpec::egiBegin(dim); GridSpec::EntireGridIteratoregiEnd = GridSpec::egiEnd(dim); for(; egi ! = egiEnd; ++egi) { constPos& p = *egi; g.nCells(p) = g.getCellDensity(p); }} |
2.1.3. DataTank for 3D Visualization
2.2. Uncertainty and Sensitivity Analysis
2.3. Model Calibration
2.3.1. Stage 1—Temporal Criteria and Controlled Stochastic Variability
2.3.2. Stage 2—Spatial Criteria
3. Results
3.1. 2D Scaling Factor Accurately Predict CFU per Granuloma Measures in 3D
3.2. Sensitivity Analysis Results: 2D and 3D Both Predict the Same Main Mechanisms Driving CFU Progression
3.2.1. Importance of Dimensionality in Recruitment and Movement
3.2.2. Enhanced TNF Concentration on the Grid Correlates with Better Outcome Independently of the Dimensionality
3.2.3. Visualization Tools and Techniques Enhance Understanding of the 3D Granuloma and Lung Environment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Organization, W.H. Global Tuberculosis Report 2016; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Ford, C.B.; Lin, P.L.; Chase, M.R.; Shah, R.R.; Iartchouk, O.; Galagan, J.; Mohaideen, N.; Ioerger, T.R.; Sacchettini, J.C.; Lipsitch, M.; et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat. Genet. 2011, 43, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.L.; Cooper, A.; Bishai, W.R. Animal Models of Tuberculosis. In Tuberculosis and the Tubercle Bacillus; Cole, S.T., Eisenach, K.D., McMurray, D.N., Jacobs, W.R., Jr., Eds.; ASM Press: Washington, DC, USA, 2005; pp. 547–560. [Google Scholar]
- Flynn, J.L.; Capuano, S.V.; Croix, D.; Pawar, S.; Myers, A.; Zinovik, A.; Klein, E. Non-human primates: A model for tuberculosis research. Tuberculosis 2003, 83, 116–118. [Google Scholar] [CrossRef]
- Kirschner, D.; Pienaar, E.; Marino, S.; Linderman, J.J. A review of computational and mathematical modeling contributions to our understanding of Mycobacterium tuberculosis within-host infection and treatment. Curr. Opin. Syst. Biol. 2017, 3, 170–185. [Google Scholar] [CrossRef]
- Wigginton, J.E.; Kirschner, D. A model to predict cell-mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis. J. Immunol. 2001, 166, 1951–1967. [Google Scholar] [CrossRef] [PubMed]
- Marino, S.; Kirschner, D.E. The human immune response to Mycobacterium tuberculosis in lung and lymph node. J. Theor. Biol. 2004, 227, 463–486. [Google Scholar] [CrossRef] [PubMed]
- Marino, S.; Pawar, S.; Fuller, C.L.; Reinhart, T.A.; Flynn, J.L.; Kirschner, D.E. Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J. Immunol. 2004, 173, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Marino, S.; Myers, A.; Flynn, J.L.; Kirschner, D.E. TNF and IL-10 are major factors in modulation of the phagocytic cell environment in lung and lymph node in tuberculosis: A next-generation two-compartmental model. J. Theor. Biol. 2010, 265, 586–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gammack, D.; Doering, C.R.; Kirschner, D.E. Macrophage response to Mycobacterium tuberculosis infection. J. Math. Biol. 2004, 48, 218–242. [Google Scholar] [CrossRef] [PubMed]
- Segovia-Juarez, J.L.; Ganguli, S.; Kirschner, D. Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J. Theor. Biol. 2004, 231, 357–376. [Google Scholar] [CrossRef] [PubMed]
- Fallahi-Sichani, M.; Schaller, M.A.; Kirschner, D.E.; Kunkel, S.L.; Linderman, J.J. Identification of key processes that control tumor necrosis factor availability in a tuberculosis granuloma. PLoS Comput. Biol. 2010, 6, e1000778. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.C.; Flynn, J.L.; Kirschner, D.E. Synergy between individual TNF-dependent functions determines granuloma performance for controlling Mycobacterium tuberculosis infection. J. Immunol. 2009, 182, 3706–3717. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.C.; Wang, J.; Chan, J.; Kirschner, D.E. The timing of TNF and IFN-gamma signaling affects macrophage activation strategies during Mycobacterium tuberculosis infection. J. Theor. Biol. 2008, 252, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Waliga, J.; Marino, S.; Kirschner, D.E. The Agent-Based Model (ABM) Describing Tuberculosis (TB) Granuloma Formation and Function in the Lung. 2015. Available online: http://malthus.micro.med.umich.edu/GranSim/ (accessed on 9 November 2018).
- Linderman, J.J.; Riggs, T.; Pande, M.; Miller, M.; Marino, S.; Kirschner, D.E. Characterizing the dynamics of CD4+ T cell priming within a lymph node. J. Immunol. 2010, 184, 2873–2885. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Mattila, J.T.; Miller, M.; Flynn, J.L.; Linderman, J.J.; Kirschner, D. Predicting lymph node output efficiency using systems biology. J. Theor. Biol. 2013, 335C, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Linderman, J.J.; Kirschner, D. Harnessing the heterogeneity of T cell differentiation fate to fine-tune generation of effector and memory T cells. Front. Immunol. 2014, 5, 57. [Google Scholar] [CrossRef] [PubMed]
- Gadhamsetty, S.; Maree, A.F.; de Boer, R.J.; Beltman, J.B. Tissue Dimensionality Influences the Functional Response of Cytotoxic T Lymphocyte-Mediated Killing of Targets. Front. Immunol. 2017, 7, 668. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.L.; Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 2001, 19, 93–129. [Google Scholar] [CrossRef] [PubMed]
- O’Garra, A.; Redford, P.S.; McNab, F.W.; Bloom, C.I.; Wilkinson, R.J.; Berry, M.P. The immune response in tuberculosis. Annu. Rev. Immunol. 2013, 31, 475–527. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.G.; Cardona, P.-J.; Kim, M.-J.; Allain, S.; Altare, F. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat. Immunol. 2009, 10, 943–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cilfone, N.A.; Perry, C.R.; Kirschner, D.E.; Linderman, J.J. Multi-scale modeling predicts a balance of tumor necrosis factor-alpha and interleukin-10 controls the granuloma environment during Mycobacterium tuberculosis infection. PLoS ONE 2013, 8, e68680. [Google Scholar] [CrossRef] [PubMed]
- Fallahi-Sichani, M.; El-Kebir, M.; Marino, S.; Kirschner, D.E.; Linderman, J.J. Multiscale computational modeling reveals a critical role for TNF-alpha receptor 1 dynamics in tuberculosis granuloma formation. J. Immunol. 2011, 186, 3472–3483. [Google Scholar] [CrossRef] [PubMed]
- Fallahi-Sichani, M.; Kirschner, D.E.; Linderman, J.J. NF-kappaB Signaling Dynamics Play a Key Role in Infection Control in Tuberculosis. Front. Physiol. 2012, 3, 170. [Google Scholar] [CrossRef] [PubMed]
- Marino, S.; Cilfone, N.A.; Mattila, J.T.; Linderman, J.J.; Flynn, J.L.; Kirschner, D.E. Macrophage Polarization Drives Granuloma Outcome during Mycobacterium tuberculosis Infection. Infect. Immun. 2015, 83, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Marino, S.; El-Kebir, M.; Kirschner, D. A hybrid multi-compartment model of granuloma formation and T cell priming in Tuberculosis. J. Theor. Biol. 2011, 280, 50–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, S.; Gideon, H.P.; Gong, C.; Mankad, S.; McCrone, J.T.; Lin, P.L.; Linderman, J.J.; Flynn, J.L.; Kirschner, D.E. Computational and Empirical Studies Predict Mycobacterium tuberculosis-Specific T Cells as a Biomarker for Infection Outcome. PLoS Comput. Biol. 2016, 12, e1004804. [Google Scholar] [CrossRef] [PubMed]
- Cilfone, N.A.; Kirschner, D.E.; Linderman, J.J. Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems. Cell. Mol. Bioeng 2015, 8, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Press, W.H.T.; Saul, A.T.; Vetterling, W.T.; Flannery, P.B. Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Marino, S.; Hult, C.; Wolberg, P.; Linderman, J.J.; Kirschner, D.E. The Role of Dimensionality in Understanding Granuloma Formation. Available online: http://malthus.micro.med.umich.edu/3D-GranSim/ (accessed on 9 November 2018).
- Nokia. Qt. Available online: http://qt.nokia.com/ (accessed on 9 November 2018).
- Khronos. OpenGL. Available online: www.opengl.org (accessed on 9 November 2018).
- Adalsteinsson, D. A Numerical Work Environment. 2018. Available online: http://www.visualdatatools.com/DataTank/index.html (accessed on 9 November 2018).
- Marino, S.; Hogue, I.B.; Ray, C.J.; Kirschner, D.E. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 2008, 254, 178–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, S.; Kirschner, D.E. Uncertainty and Sensitivity Functions and Implementation. 2018. Available online: http://malthus.micro.med.umich.edu/lab/usadata/ (accessed on 9 November 2018).
- Cicchese, J.M.; Evans, S.; Hult, C.; Joslyn, L.R.; Wessler, T.; Millar, J.A.; Marino, S.; Cilfone, N.A.; Mattila, J.T.; Linderman, J.J.; et al. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol. Rev. 2018, 285, 147–167. [Google Scholar] [CrossRef] [PubMed]
- Cilfone, N.A.; Ford, C.B.; Marino, S.; Mattila, J.T.; Gideon, H.P.; Flynn, J.L.; Kirschner, D.E.; Linderman, J.J. Computational modeling predicts IL-10 control of lesion sterilization by balancing early host immunity-mediated antimicrobial responses with caseation during Mycobacterium tuberculosis infection. J. Immunol. 2015, 194, 664–677. [Google Scholar] [CrossRef] [PubMed]
- Marino, S.; Fallahi-Sichani, M.; Linderman, J.J.; Kirschner, D.E. Mathematical Models of Anti-TNF Therapies and their Correlation with Tuberculosis. In Antibody-Mediated Drug Delivery Systems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; Chapter 5; pp. 83–104. [Google Scholar] [CrossRef]
CPU h per 100 Days | Number of Micro-Compartments | Number of Agents [min-max] | |
---|---|---|---|
2D | 0.1–1.4 h | 1 × 104 | [170, 9395] |
3D | 40–200 h | 1 × 106 | [5 × 103, 1 × 106] |
DAY 7 | 2D | GrowthRateIntMtb | thresholdApoptosisTNF | nrIntMtbBurstCInf | Tcyt_maxRecProb | probKillExtMtbRest | kApoptosis | ||||
0.9317 | 0.3477 | 0.2505 | 0.0561 | −0.1016 | −0.1423 | ||||||
3D | GGrowthRateIntMtb | thresholdApoptosisTNF | sourceDensity | nrIntMtbBurstCInf | estIntPartitionTNF | kApoptosis | probKillExtMtbRest | ||||
0.9598 | 0.2343 | 0.1328 | 0.0412 | −0.0666 | −0.0914 | −0.1452 | |||||
DAY 14 | 2D | GrowthRateIntMtb | thresholdApoptosisTNF | nrIntMtbBurstCInf | GrowthRateExtMtb | estIntPartitionTNF | kApoptosis | ||||
0.9382 | 0.5081 | 0.3287 | 0.1506 | −0.1400 | −0.2461 | ||||||
3D | GrowthRateIntMtb | thresholdApoptosisTNF | sourceDensity | kDeg | estIntPartitionTNF | kApoptosis | probKillExtMtbRest | ||||
0.9686 | 0.4054 | 0.1709 | 0.0621 | −0.1138 | −0.1787 | −0.1906 | |||||
DAY 28 | 2D | GrowthRateIntMtb | thresholdApoptosisTNF | GrowthRateExtMtb | nrIntMtbBurstCInf | estIntPartitionTNF | kApoptosis | ||||
0.9284 | 0.5517 | 0.3578 | 0.3058 | −0.1559 | −0.3047 | ||||||
3D | GrowthRateIntMtb | thresholdApoptosisTNF | GrowthRateExtMtb | nrIntMtbBurstCInf | estIntPartitionTNF | probKillExtMtbRest | kApoptosis | ||||
0.9655 | 0.5348 | 0.2848 | 0.1570 | −0.1549 | −0.1871 | −0.2982 | |||||
DAY 50 | 2D | GrowthRateIntMtb | kDeg | nrIntMtbBurstCInf | maxRecProb | Treg_maxRecProb | thresholdApoptosisTNF | CC_kDeg | probMoveToMac | sourceDensity | Tgam_maxRecProb |
0.7689 | 0.3378 | 0.2926 | 0.2819 | 0.2194 | 0.2140 | −0.1687 | −0.2763 | −0.2805 | −0.3241 | ||
3D | GrowthRateIntMtb | kDeg | Treg_maxRecProb | thresholdApoptosisTNF | Tgam_maxRecProb | dTNF | factorDeactIL10 | ||||
0.9163 | 0.4921 | 0.4660 | 0.2145 | −0.2028 | −0.2217 | −0.2391 | |||||
DAY 60 | 2D | GrowthRateIntMtb | kDeg | maxRecProb | nrIntMtbBurstCInf | Treg_maxRecProb | thresholdApoptosisTNF | CC_kDeg | sourceDensity | probMoveToMac | Tgam_maxRecProb |
0.7442 | 0.4008 | 0.2992 | 0.2744 | 0.2400 | 0.2011 | −0.1960 | −0.2486 | −0.3073 | −0.3241 | ||
3D | GrowthRateIntMtb | kDeg | Treg_maxRecProb | estConsRateTNF | kNFkB | dTNF | factorDeactIL10 | ||||
0.8989 | 0.4951 | 0.4618 | 0.2154 | −0.2019 | −0.2108 | −0.2313 | |||||
DAY 90 | 2D | GrowthRateIntMtb | kDeg | maxRecProb | Treg_maxRecProb | nrIntMtbBurstCInf | estConsRateTNF | CC_kDeg | sourceDensity | probMoveToMac | Tgam_maxRecProb |
0.7010 | 0.4419 | 0.3058 | 0.2379 | 0.2297 | 0.1927 | −0.2011 | −0.2327 | −0.3132 | −0.3342 | ||
3D | GrowthRateIntMtb | kDeg | Treg_maxRecProb | estConsRateTNF | kNFkB | factorDeactIL10 | Ikdeg | ||||
0.8685 | 0.5024 | 0.4615 | 0.2191 | −0.2028 | −0.2185 | −0.2252 | |||||
DAY 100 | 2D | GrowthRateIntMtb | kDeg | maxRecProb | Treg_maxRecProb | nrIntMtbBurstCInf | estConsRateTNF | CC_kDeg | sourceDensity | probMoveToMac | Tgam_maxRecProb |
0.6931 | 0.4471 | 0.3019 | 0.2374 | 0.2210 | 0.1914 | −0.1955 | −0.2329 | −0.3081 | −0.3306 | ||
3D | GrowthRateIntMtb | kDeg | Treg_maxRecProb | estConsRateTNF | kNFkB | factorDeactIL10 | Ikdeg | ||||
0.8685 | 0.5024 | 0.4615 | 0.2191 | −0.2028 | −0.2185 | −0.2252 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marino, S.; Hult, C.; Wolberg, P.; Linderman, J.J.; Kirschner, D.E. The Role of Dimensionality in Understanding Granuloma Formation. Computation 2018, 6, 58. https://doi.org/10.3390/computation6040058
Marino S, Hult C, Wolberg P, Linderman JJ, Kirschner DE. The Role of Dimensionality in Understanding Granuloma Formation. Computation. 2018; 6(4):58. https://doi.org/10.3390/computation6040058
Chicago/Turabian StyleMarino, Simeone, Caitlin Hult, Paul Wolberg, Jennifer J. Linderman, and Denise E. Kirschner. 2018. "The Role of Dimensionality in Understanding Granuloma Formation" Computation 6, no. 4: 58. https://doi.org/10.3390/computation6040058
APA StyleMarino, S., Hult, C., Wolberg, P., Linderman, J. J., & Kirschner, D. E. (2018). The Role of Dimensionality in Understanding Granuloma Formation. Computation, 6(4), 58. https://doi.org/10.3390/computation6040058