Levy-Lieb-Based Monte Carlo Study of the Dimensionality Behaviour of the Electronic Kinetic Functional
Abstract
:1. Introduction
2. Levy-Lieb Constrained Search Formalism and Monte Carlo Evaluation
3. Monte Carlo Sampling for Nearly Uniform Electron Gas
3.1. Spinless Case
3.2. Adding the Effects of Spin
4. Dimensional Behaviour of Electronic Kinetic Correlation Functional
5. Results
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Technical Details
References
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Wang, Y.A.; Carter, E.A. Orbital-free kinetic-energy density functional theory. In Theoretical Methods in Condensed Phase Chemistry; Schwartz, S.D., Ed.; Kluwer: Dordrecht, The Netherlands, 2002; pp. 117–184. [Google Scholar]
- Watson, S.; Carter, E.A. Linear-scaling parallel algorithms for the first principles treatment of metals. Comp. Phys. Commun. 2000, 128, 67–92. [Google Scholar] [CrossRef]
- Choly, N.; Kaxiras, E. Kinetic energy density functionals for non-periodic systems. Solid State Commun. 2002, 121, 281–286. [Google Scholar] [CrossRef]
- Chai, J.D.; Weeks, J.A. Modified statistical treatment of kinetic energy in the thomas-fermi model. J. Phys. Chem. B 2004, 108, 6870–6876. [Google Scholar] [CrossRef]
- Gavini, V.; Bhattacharya, K.; Ortiz, M. Quasi-continuum orbital-free density-functional theory: A route to multi-million atom non-periodic DFT calculation. J. Mech. Phys. Solids 2007, 55, 697–718. [Google Scholar] [CrossRef]
- Karasiev, V.V.; Trickey, S.B. Issues and challenges in orbital-free density functional calculations. Comp. Phys. Commun. 2012, 183, 2519–2527. [Google Scholar] [CrossRef]
- Wesolowski, T.A.; Wang, Y.A. Recent progress in orbital-free density functional theory. In Recent Advances in Computational Chemistry; World Scientific: Singapore, 2013. [Google Scholar]
- Levy, M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc. Natl. Acad. Sci. USA 1979, 76, 6062–6065. [Google Scholar] [CrossRef] [PubMed]
- Lieb, E.H. Density functionals for Coulomb systems. Int. J. Quantum Chem. 1983, 24, 243–277. [Google Scholar] [CrossRef]
- Delle Site, L. Levy-Lieb constrained-search formulation as a minimization of the correlation functional. J. Phys. A Math. Theor. 2007, 40, 2787–2792. [Google Scholar] [CrossRef]
- Ghiringhelli, L.M.; Delle Site, L. Design of kinetic functionals for many-body electron systems: Combining analytical theory with Monte Carlo sampling of electronic configurations. Phys. Rev. B 2008, 77, 073104. [Google Scholar]
- Ghiringhelli, L.M.; Hamilton, I.P.; Delle Site, L. Interacting electrons, spin statistics, and information theory. J. Chem. Phys. 2010, 132, 014106. [Google Scholar] [CrossRef] [PubMed]
- Delle Site, L. Kinetic functional of interacting electrons: A numerical procedure and its statistical interpretation. J. Stat. Phys. 2011, 144, 663–678. [Google Scholar] [CrossRef]
- Delle Site, L. Shannon entropy and many-electron correlations: Theoretical concepts, numerical results, and Collins conjecture. Int. J. Quantum Chem. 2015, 115, 1396–1404. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, P. Dimensional crossover of the exchange-correlation density functional. Phys. Rev. B 2000, 62, 2321–2329. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E. Dimensional crossover of the kinetic-energy electronic density functional. Phys. Rev. A 2000, 62, 014501. [Google Scholar] [CrossRef]
- Sears, S.B.; Parr, R.G.; Dinur, U. On the quantum-mechanical kinetic energy as a measure of the information in a distribution. Isr. J. Chem. 1980, 19, 165–173. [Google Scholar] [CrossRef]
- Weizäcker, C.F. Zur theorie der kernmassen. Z. Phys. 1935, 96, 431–458. [Google Scholar] [CrossRef]
- Thomas, L.H. The calculation of atomic fields. Proc. Camb. Philos. Soc. 1927, 23, 542–548. [Google Scholar] [CrossRef]
- Fermi, E. Statistical method to determine some properties of atoms. Rend. Lincei 1927, 6, 602–607. [Google Scholar]
- Pittalis, S.; Räsänen, E. Orbital-free energy functional for electrons in two dimensions. Phys. Rev. B 2009, 80, 165112. [Google Scholar]
- Lee, R.M.; Drummond, N.D. Ground-state properties of the one-dimensional electron liquid. Phys. Rev. B 2011, 83, 245114. [Google Scholar]
- Drummond, N.D.; Needs, R.J. Phase diagram of the low-density two-dimensional homogeneous electron gas. Phys. Rev. Lett. 2009, 102, 126402. [Google Scholar] [CrossRef] [PubMed]
- Wagner, L.K.; Ceperley, D.M. Discovering correlated fermions using quantum Monte Carlo. Rep. Prog. Phys. 2016, 79, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Drummond, N.D.; Needs, R.J. Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid. Phys. Rev. B 2009, 79, 085414. [Google Scholar]
- Haldane, F.D.M. ’Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C Solid State Phys. 1981, 14, 2585–2609. [Google Scholar] [CrossRef]
- Astrakharchik, G.E.; Girardeau, M.D. Exact ground-state properties of a one-dimensional Coulomb gas. Phys. Rev. B 2011, 83, 153303. [Google Scholar]
- Loos, P.-F.; Gill, P.M.W. Correlation energy of the one-dimensional Coulomb gas. arXiv, 2012; arXiv:1207.0908. [Google Scholar]
- Jastrow, R. Many-body problem with strong forces. Phys. Rev. 1955, 98, 1479. [Google Scholar] [CrossRef]
- Drummond, N.D.; Towler, M.D.; Needs, R.J. Jastrow correlation factor for atoms, molecules, and solids. Phys. Rev. B 2004, 70, 235119. [Google Scholar]
- Deshpande, V.V.; Vikram, V.; Bockrath, M.; Glazman, L.I.; Yacoby, A. Electron liquids and solids in one dimension. Nature 2010, 464, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Kukkonen, C.A.; Overhauser, A.W. Electron-electron interaction in simple metals. Phys. Rev. B 1979, 20, 550–557. [Google Scholar] [CrossRef]
- Trickey, S.B.; Karasiev, V.V.; Vela, A. Positivity constraints and information-theoretical kinetic energy functional. Phys. Rev. B 2011, 84, 075146. [Google Scholar] [CrossRef]
k Value | ||
---|---|---|
k = 0.5 | ||
k = 0.75 | ||
k = 1.2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
A., S.; Ghiringhelli, L.M.; Delle Site, L. Levy-Lieb-Based Monte Carlo Study of the Dimensionality Behaviour of the Electronic Kinetic Functional. Computation 2017, 5, 30. https://doi.org/10.3390/computation5020030
A. S, Ghiringhelli LM, Delle Site L. Levy-Lieb-Based Monte Carlo Study of the Dimensionality Behaviour of the Electronic Kinetic Functional. Computation. 2017; 5(2):30. https://doi.org/10.3390/computation5020030
Chicago/Turabian StyleA., Seshaditya, Luca M. Ghiringhelli, and Luigi Delle Site. 2017. "Levy-Lieb-Based Monte Carlo Study of the Dimensionality Behaviour of the Electronic Kinetic Functional" Computation 5, no. 2: 30. https://doi.org/10.3390/computation5020030
APA StyleA., S., Ghiringhelli, L. M., & Delle Site, L. (2017). Levy-Lieb-Based Monte Carlo Study of the Dimensionality Behaviour of the Electronic Kinetic Functional. Computation, 5(2), 30. https://doi.org/10.3390/computation5020030