Theoretical Prediction of Electronic Structures and Phonon Dispersion of Ce2XN2 (X = S, Se, and Te) Ternary
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- DiSalvo, F.J.; Clarke, S.J. Ternary nitrides: A rapidly growing class of new materials. Curr. Opin. Solid State Mater. Sci. 1996, 1, 241–249. [Google Scholar] [CrossRef]
- Gregory, D.H. Nitride chemistry of the s-block elements. Coord. Chem. Rev. 2001, 215, 301–345. [Google Scholar]
- Miura, A.; Wen, X.-D.; Abe, H.; Yau, G.; DiSalvo, F.J. Non-stoichiometric FexWN2: Leaching of Fe from layer-structured FeWN2. J. Solid State Chem. 2010, 183, 327–331. [Google Scholar] [CrossRef]
- Miura, A.; Tague, M.E.; Gregoire, J.M.; Wen, X.-D.; van Dover, R.B.; Abruna, H.D.; DiSalvo, F.J. Synthesis of Pt−Mo−N Thin Film and Catalytic Activity for Fuel Cells. Chem. Mater. 2010, 22, 3451–3456. [Google Scholar] [CrossRef]
- Foltin, M.L.; Schleid, T. The Short Series of Lanthanoid(III) Nitride Tellurides with the Composition Ln3NTe3 (Ln = Gd–Ho). Z. Anorg. Allg. Chem. 2015, 641, 292–297. [Google Scholar]
- Schleid, T.; Lissner, F. Cs2Gd6N2Te7: The first quaternary nitride telluride of the lanthanides. J. Alloys Compd 2006, 418, 68–72. [Google Scholar]
- Schleid, T.; Lissner, F. Lanthanido ammonium cations [NM4]9+ as main structural features in lanthanide(III) nitride chalcogenides and their derivatives. J. Alloys Compd 2008, 451, 610–616. [Google Scholar]
- Braunling, D.; Pecher, O.; Trots, D.M.; Senyshyn, A.; Zherebtsov, D.; Haarmann, F.; Niewa, R. Synthesis, Crystal Structure and Lithium Motion of Li8SeN2 and Li8TeN2. Z. Anorg Allg. Chem. 2010, 636, 936–946. [Google Scholar]
- DiSalvo, F.J. Challenges and opportunities in solid-state chemistry. Pure Appl. Chem. 2000, 72, 1799–1807. [Google Scholar]
- Miura, A.; Lowe, M.; Leonard, B.M.; Subban, C.V.; Masubuchi, Y.; Kikkawa, S.; Dronskowski, R.; Hennig, R.G.; Abrun, H.D.; DiSalvo, F.J. Silver delafossite nitride, AgTaN2? J. Solid State Chem. 2011, 184, 7–11. [Google Scholar] [CrossRef]
- Dong, Y.; DiSalvo, F.J. Ce2SeN2: Ternary Selenide Nitride Containing Tetravalent Ce in the Ce2SO2 Structure Type. Solid State Sci. 2011, 13, 19–22. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Liechtenstein, A.I.; Anisimov, V.I.; Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 1995, 52, R5467. [Google Scholar] [CrossRef]
- Kanoun, M.B.; Reshak, A.H.; Kanoun-Bouayed, N.; Goumri-Said, S. Evidence of Coulomb correction and spin-orbit coupling in rare-earth dioxides CeO2, PrO2 and TbO2: An ab initio study. J. Magn. Magn. Mater. 2012, 324, 1397–1405. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Bader, R.F. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Holec, D.; Rachbauer, R.; Chen, L.; Wang, L.; Luef, D.; Mayrhofer, P.H. Phase stability and alloy-related trends in Ti–Al–N, Zr–Al–N and Hf–Al–N systems from first principles. Surf. Coat. Technol. 2011, 206, 1698–1704. [Google Scholar] [CrossRef] [PubMed]
- Born, M.; Hang, K. Dynamical Theory and Experiments I; Springer Verlag Publishers: Berlin, Germany, 1982. [Google Scholar]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A 1952, 65, 349–354. [Google Scholar] [CrossRef]
- Holm, B.; Ahuja, R. Ab initio calculation of elastic constants of SiO2 stishovite and α-quartz. J. Chem. Phys. 1999, 111, 2071–2074. [Google Scholar] [CrossRef]
- Goumri-Said, S.; Kanoun, M.B. DFT+U study of the oxide-ion conductor pentalanthanum hexamolybdenum henicosaoxide. J. Solid State Chem. 2013, 197, 304–311. [Google Scholar] [CrossRef]
- Azam, S.; Khan, S.A.; Goumri-Said, S. Exploring the electronic structure and optical properties of the quaternary selenide compound, Ba4Ga4SnSe12: For photovoltaic applications. J. Solid State Chem. 2015, 229, 260–265. [Google Scholar] [CrossRef]
- Abadias, G.; Kanoun, M.B.; Goumri-Said, S.; Koutsokeras, L.; Dub, S.N.; Djemia, P. Electronic structure and mechanical properties of ternary ZrTaN alloys studied by ab initio calculations and thin-film growth experiments. Phys. Rev. B 2014, 90, 144107. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Goumri-Said, S.; Kanoun-Bouayed, N.; Reshak, A.H.; Kanoun, M.B. On the electronic nature of silicon and germanium based oxynitrides and their related mechanical, optical and vibrational properties as obtained from DFT and DFPT. Comput. Mater. Sci. 2012, 53, 158–168. [Google Scholar] [CrossRef]
Ce2SeN2 | Ce2SN2 | Ce2TeN2 | ||
---|---|---|---|---|
This work | Exp. [11] | This work | ||
a (Å) | 3.953 | 4.077 | 3.923 | 3.996 |
c (Å) | 7.032 | 7.047 | 6.785 | 7.461 |
zCe,N | zCe = 0.7026 zN = 0.3716 | zCe = 0.7153 zN = 0.3744 | zCe = 0.7115 zN = 0.3681 | zCe = 0.7115 zN = 0.3681 |
ΔEf (eV) | −2.56 | −3.65 | −2.58 | |
Q (e) | QCe = +1.96 QSe = −0.99 QN = −1.46 | QCe = +1.99 QS = −1.07 QN = −1.45 | QCe = +1.84 QTe = −0.56 QN = −1.56 | |
C11 (GPa) | 202.9 | 220.8 | 183.6 | |
C12 (GPa) | 94.3 | 93.7 | 86.3 | |
C13 (GPa) | 75.1 | 72.4 | 83.9 | |
C14 (GPa) | 2.9 | 1.0 | 6.3 | |
C33 (GPa) | 185.7 | 184.5 | 207.0 | |
C44 (GPa) | 80.6 | 84.8 | 76.1 | |
BH (GPa) | 119.7 | 121.6 | 120.1 | |
GH (GPa) | 65.1 | 71.7 | 60.0 | |
E (GPa) | 165.3 | 179.7 | 154.3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanoun, M.B.; Goumri-Said, S. Theoretical Prediction of Electronic Structures and Phonon Dispersion of Ce2XN2 (X = S, Se, and Te) Ternary. Computation 2017, 5, 29. https://doi.org/10.3390/computation5020029
Kanoun MB, Goumri-Said S. Theoretical Prediction of Electronic Structures and Phonon Dispersion of Ce2XN2 (X = S, Se, and Te) Ternary. Computation. 2017; 5(2):29. https://doi.org/10.3390/computation5020029
Chicago/Turabian StyleKanoun, Mohammed Benali, and Souraya Goumri-Said. 2017. "Theoretical Prediction of Electronic Structures and Phonon Dispersion of Ce2XN2 (X = S, Se, and Te) Ternary" Computation 5, no. 2: 29. https://doi.org/10.3390/computation5020029
APA StyleKanoun, M. B., & Goumri-Said, S. (2017). Theoretical Prediction of Electronic Structures and Phonon Dispersion of Ce2XN2 (X = S, Se, and Te) Ternary. Computation, 5(2), 29. https://doi.org/10.3390/computation5020029