Optical Properties of Silicon-Rich Silicon Nitride (SixNyHz) from First Principles
Abstract
:1. Introduction
2. Computational Methods and Structural Models
3. Results AND Discussion
3.1. Validation of β-Si3N4
3.2. SixNy—The Influence of the Si/N Ratio and Si Positions
- (1)
- The general shape and the position of the main peaks are similar, where the ELF increases from low energy and peaks at about 23 to 27 eV and slopes down at higher energy.
- (2)
- The main peaks of the Si-rich silicon nitride have shifted slightly to lower energy (at about 1–2 eV). Therefore, the magnitude of the ELF at low energies side of the slope is larger than that of β-Si3N4.
- (3)
- Extra energy loss peaks appear below 5 eV. The increase in the magnitude of the ELF and number of peaks are larger for Si7N7 than for Si13N15.
- (1)
- The position of the main peak of Si7N7 cluster is significantly sharper and is in a position at about 5 eV lower, and which is closer to that of Si.
- (2)
- The positions of the adsorption peaks below 10 eV can be seen as a combination of those of Si, Si3N4, and Si7N7, but the peaks are in general smaller and broader (below 1 eV and at about 7 eV).
3.3. SixNyHz—H in Bulk Si-Rich Silicon Nitride
3.4. SixNyHz—H Termination on the Surfaces of Si3N4
3.4.1. Surface vs. Bulk
3.4.2. Clean Surface vs. H Termination
4. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Riley, F.L. Silicon nitride and related materials. J. Am. Ceram. Soc. 2000, 83, 245–265. [Google Scholar] [CrossRef]
- Hezel, R.; Schroner, R. Plasma Si nitride—A promising dielectric to achieve high quality silicon MIS/IL solar cells. J. Appl. Phys. 1981, 52, 3076–3079. [Google Scholar] [CrossRef]
- Eitan, B.; Pavan, P.; Bloom, I.; Aloni, E.; Frommer, A.; Finzi, D. A novel localized trapping, 2-bit nonvolatile memory cell. IEEE Electron Device Lett. 2000, 21, 543–545. [Google Scholar] [CrossRef]
- Seidel, H.; Csepregi, L.; Heuberger, A.; Baumgärtel, H. Anisotropic etching of crystalline silicon in alkaline solutions II, influence of dopants. J. Electrochem. Soc. 1990, 137, 3626–3632. [Google Scholar] [CrossRef]
- Kooi, E.; van Lierop, J.G.; Appels, J.A. Formation of silicon nitride at a Si–SiO2 interface during local oxidation of silicon and during heat-treatment of oxidized silicon in NH3 gas. J. Electrochem. Soc. 1976, 123, 1117–1120. [Google Scholar] [CrossRef]
- Bilevych, Y.; Brunner, S.E.; Chan, H.W.; Charbon, E.; van der Graaf, H.; Hagen, C.W.; Nützel, G.; Pinto, S.D.; Prodanović, V.; Rotman, D.; et al. Potential Applications of Electron Emission Membranes in Medicine. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, in press. [Google Scholar] [CrossRef]
- Goodman, A.M. Photoemission of electrons and holes into silicon nitride. Appl. Phys. Lett. 1968, 13, 275–277. [Google Scholar] [CrossRef]
- Fijol, J.J.; Then, A.M.; Tasker, G.W. Secondary electron yield of SiO2 and Si3N4 thin films for continuous dynode electron multipliers. Appl. Surf. Sci. 1991, 464, 48–49. [Google Scholar] [CrossRef]
- Creemer, J.F.; Helveg, S.; Kooyman, P.J.; Molenbroek, A.M.; Zandbergen, H.W.; Sarro, P.M. A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions. J. Microelectromech. Syst. 2010, 19, 254–264. [Google Scholar] [CrossRef]
- Tao, S.X.; Theulings, A.; Smedley, J.; van der Graaf, H. Ab initio study of electron affinity of hydrogen terminated β-Si3N4. Diam. Relat. Mater. 2015, 53, 52–57. [Google Scholar] [CrossRef]
- Tao, S.X.; Theulings, A.; Smedley, J.; van der Graaf, H. DFT study of electron affinity of alkali metal termination on clean and oxygenated β-Si3N4. Diam. Relat. Mater. 2015, 58, 214–220. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A Simulation Toolkit. Available online: http://www.sciencedirect.com/science/article/pii/S0168900203013688 (accessed on 7 December 2015).
- Kieft, E.; Bosch, E. Refinement of Monte Carlo simulations of electron-specimen interaction in low-voltage SEM. J. Phys. D Appl. Phys. 2008, 41, 215310. [Google Scholar] [CrossRef]
- Palik, E.D. (Ed.) Handbook of Optical Constants of Solids III; Academic Press: New York, NY, USA, 1998.
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens Matter 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. J. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Boulay, D.D.; Ishizawa, N.; Atake, T.; Streltsov, V.; Furuya, K.; Munakatae, F. Synchrotron X-ray and ab initio studies of β-Si3N4. Acta Crystallogr. B 2004, 60, 388–405. [Google Scholar] [CrossRef] [PubMed]
- Belkada, R.; Kohyama, M.; Shibayanagi, T.; Naka, M. Relative stability of P63/m and P63 structures of β-Si3N4. Phys. Rev. B 2002, 65, 092104. [Google Scholar] [CrossRef]
- Villars, P.; Calvert, L.D. Pearson’s Handbook of Crystallographic Data for Intermetallic Phases; ASM International: Russell Township, OH, USA, 1985; Volume 3. [Google Scholar]
- Idrobo, J.C.; Iddir, H.; Ögüt, S.; Ziegler, A.; Browning, N.D.; Ritchie, R.O. Ab initio structural energetics of β-Si3N4 surfaces. Phys. Rev. B 2005, 72, 241301. [Google Scholar] [CrossRef]
- Bermudez, V.M. Theoretical study of the electronic structure of the Si3N4 (0001) surface. Surf. Sci. 2005, 579, 11–20. [Google Scholar] [CrossRef]
- Cai, Y.Q.; Zhang, L.T.; Zeng, Q.F.; Cheng, L.F.; Xu, Y.D. First-principles study of vibrational and dielectric properties of β-Si3N4. Phys. Rev. B 2006, 74, 174301. [Google Scholar] [CrossRef]
- Thomas, W. Properties of Silicon Nitride—An Ab-Initio Study of the Crystalline Phases and Amorphous Silicon-Nitrogen Alloys. Master’s Thesis, University of Vienna, Vienna, Austria, 2011. [Google Scholar]
- Gajdoš, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F. Linear optical properties in the projector augmented-wave methodology. Phys. Rev. B 2006, 73, 45112. [Google Scholar] [CrossRef]
- Harl, J. The Linear Response Function in Density Functional Theory: Optical Spectra and Improved Description of the Electron Correlation. Ph.D. Thesis, University of Vienna, Vienna, Austria, 31 October 2008. [Google Scholar]
- Philipp, H.R. Optical Properties of Silicon Nitride. J. Electrochein. Soc. 1973, 120, 295–300. [Google Scholar] [CrossRef]
- Prodanovic, V.; Chan, H.W.; Smedley, J.; Theulings, A.; Tao, S.X.; van der Graaf, H.; Sarro, P.M. Optimization of Silicon-rich Silicon Nitride Films for Electron Multiplication in Timed Photon Counters. Procedia Eng. 2015, 120, 1111–1114. [Google Scholar] [CrossRef]
- Theulings, A.; Tao, S.X.; van der Graaf, H. Monte Carlo simulation of low energy photon-electron interaction and transportation in silicon rich silicon nitride. In preparation.
- Hintzsche, L.E.; Fang, C.M.; Marsman, M.; Jordan, G.; Lamers, M.W.P.E.; Weeber, A.W.; Kresse, G. Defects and defect healing in amorphous Si3N4-xHy: An ab initio density functional theory study. PRB 2013, 88, 155204. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, S.X.; Theulings, A.M.M.G.; Prodanović, V.; Smedley, J.; Van der Graaf, H. Optical Properties of Silicon-Rich Silicon Nitride (SixNyHz) from First Principles. Computation 2015, 3, 657-669. https://doi.org/10.3390/computation3040657
Tao SX, Theulings AMMG, Prodanović V, Smedley J, Van der Graaf H. Optical Properties of Silicon-Rich Silicon Nitride (SixNyHz) from First Principles. Computation. 2015; 3(4):657-669. https://doi.org/10.3390/computation3040657
Chicago/Turabian StyleTao, Shu Xia, Anne M. M. G. Theulings, Violeta Prodanović, John Smedley, and Harry Van der Graaf. 2015. "Optical Properties of Silicon-Rich Silicon Nitride (SixNyHz) from First Principles" Computation 3, no. 4: 657-669. https://doi.org/10.3390/computation3040657
APA StyleTao, S. X., Theulings, A. M. M. G., Prodanović, V., Smedley, J., & Van der Graaf, H. (2015). Optical Properties of Silicon-Rich Silicon Nitride (SixNyHz) from First Principles. Computation, 3(4), 657-669. https://doi.org/10.3390/computation3040657