Computational Methods in Structural Engineering: Current Advances and Future Perspectives
Abstract
1. Introduction
2. Contributions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Thango, S.G.; Stavroulakis, G.E.; Drosopoulos, G.A. Investigation of the Failure Response of Masonry Walls Subjected to Blast Loading Using Nonlinear Finite Element Analysis. Computation 2023, 11, 165. https://doi.org/10.3390/computation11080165.
- Damikoukas, S.; Lagaros, N.D. The MLDAR Model: Machine Learning-Based Denoising of Structural Response Signals Generated by Ambient Vibration. Computation 2024, 12, 31. https://doi.org/10.3390/computation12020031.
- Domaneschi, M.; Cucuzza, R.; Sardone, A.; Lopez, S.L.; Movahedi, M.; Marano, G.C. Numerical Covariance Evaluation for Linear Structures Subject to Non-Stationary Random Inputs. Computation 2024, 12, 50. https://doi.org/10.3390/computation12030050.
- Bakas, N. Taylor Polynomials in a High Arithmetic Precision as Universal Approximators. Computation 2024, 12, 53. https://doi.org/10.3390/computation12030053.
- Hadji, L.; Plevris, V.; Madan, R.; Ait Atmane, H. Multi-Directional Functionally Graded Sandwich Plates: Buckling and Free Vibration Analysis with Refined Plate Models under Various Boundary Conditions. Computation 2024, 12, 65. https://doi.org/10.3390/computation12040065.
- Ababu; Markou, G.; Skorpen, S. Using Machine Learning Algorithms to Develop a Predictive Model for Computing the Maximum Deflection of Horizontally Curved Steel I-Beams. Computation 2024, 12, 151. https://doi.org/10.3390/computation12080151.
- Mahmoudian, A.; Bypour, M.; Kioumarsi, M. Explainable Boosting Machine Learning for Predicting Bond Strength of FRP Rebars in Ultra High-Performance Concrete. Computation 2024, 12, 202. https://doi.org/10.3390/computation12100202.
- Hamdia, K.M. Numerical Homogenization Method Applied to Evaluate Effective Converse Flexoelectric Coefficients. Computation 2025, 13, 48. https://doi.org/10.3390/computation13020048.
References
- Owen, D.R.J.; Feng, Y.T. Fifty years of finite elements—A solid mechanics perspective. Theor. Appl. Mech. Lett. 2012, 2, 051001. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Clough, R.W. The finite element method after twenty-five years: A personal view. Comput. Struct. 1980, 12, 361–370. [Google Scholar] [CrossRef]
- Belytschko, T.; Liu, W.K.; Moran, B.; Elkhodary, K. Nonlinear Finite Elements for Continua and Structures, 2nd ed.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Deaton, J.D.; Grandhi, R.V. A survey of structural and multidisciplinary continuum topology optimization: Post 2000. Struct. Multidisc. Optim. 2014, 49, 1–38. [Google Scholar] [CrossRef]
- Rozvany, G.I.N. A critical review of established methods of structural topology optimization. Struct. Multidisc. Optim. 2009, 37, 217–237. [Google Scholar] [CrossRef]
- Papadrakakis, M.; Lagaros, N.D.; Tsompanakis, Y.; Plevris, V. Large Scale Structural Optimization: Computational Methods and Optimization Algorithms. Arch. Comput. Methods Eng. 2001, 8, 239–301. [Google Scholar] [CrossRef]
- Bendsøe, M.P. Optimal shape design as a material distribution problem. Struct. Optim. 1989, 1, 193–202. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Sigmund, O. Topology Optimization: Theory, Methods, and Applications; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar] [CrossRef]
- Chamatidis, I.; Stoumpos, M.; Kazakis, G.; Kallioras, N.A.; Triantafyllou, S.; Plevris, V.; Lagaros, N.D. Overview on Machine Learning Assisted Topology Optimization Methodologies. In Machine Learning in Modeling and Simulation: Methods and Applications; Rabczuk, T., Bathe, K.-J., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 373–394. [Google Scholar] [CrossRef]
- Plevris, V.; Almutairi, A.; Jiménez Rios, A. Advancing Sustainability Through Structural Optimization: Innovations in Material Efficiency and Environmental Impact Reduction. In Proceedings of the 1st International Conference on Net-Zero Built Environment: Innovations in Materials, Structures, and Management Practices (Net-Zero Future 2024), Oslo, Norway, 19–21 June 2024; pp. 1611–1623. [Google Scholar]
- Chandler, A.M.; Lam, N.T.K. Performance-based design in earthquake engineering: A multi-disciplinary review. Eng. Struct. 2001, 23, 1525–1543. [Google Scholar] [CrossRef]
- Ghobarah, A. Performance-based design in earthquake engineering: State of development. Eng. Struct. 2001, 23, 878–884. [Google Scholar] [CrossRef]
- Franchini, A.; Galasso, C.; Torero, J.L. Probabilistic Performance-based Fire Design of Structures: A Hazard-Centred and Consequence-Oriented Perspective. Fire Technol. 2024, 60, 2845–2873. [Google Scholar] [CrossRef]
- Hu, S.; Guo, T.; Alam, M.S.; Koetaka, Y.; Ghafoori, E.; Karavasilis, T.L. Machine learning in earthquake engineering: A review on recent progress and future trends in seismic performance evaluation and design. Eng. Struct. 2025, 340, 120721. [Google Scholar] [CrossRef]
- Ghatage, P.S.; Kar, V.R.; Sudhagar, P.E. On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review. Compos. Struct. 2020, 236, 111837. [Google Scholar] [CrossRef]
- Salehi, H.; Burgueño, R. Emerging artificial intelligence methods in structural engineering. Eng. Struct. 2018, 171, 170–189. [Google Scholar] [CrossRef]
- Bypour, M.; Yekrangnia, M.; Kioumarsi, M. Machine learning-driven optimization for predicting compressive strength in fly ash geopolymer concrete. Clean. Eng. Technol. 2025, 25, 100899. [Google Scholar] [CrossRef]
- Thai, H.-T. Machine learning for structural engineering: A state-of-the-art review. Structures 2022, 38, 448–491. [Google Scholar] [CrossRef]
- Plevris, V.; Ahmad, A.; Lagaros, N.D. (Eds.) Artificial Intelligence and Machine Learning Techniques for Civil Engineering; IGI Global: Pennsylvania, PA, USA, 2023. [Google Scholar] [CrossRef]
- Cha, Y.-J.; Ali, R.; Lewis, J.; Büyüköztürk, O. Deep learning-based structural health monitoring. Autom. Constr. 2024, 161, 105328. [Google Scholar] [CrossRef]
- Azimi, M.; Eslamlou, A.D.; Pekcan, G. Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review. Sensors 2020, 20, 2778. [Google Scholar] [CrossRef]
- Mahmoudian, A.; Bypour, M.; Kioumarsi, M. Explainable Boosting Machine Learning for Predicting Bond Strength of FRP Rebars in Ultra High-Performance Concrete. Computation 2024, 12, 202. [Google Scholar] [CrossRef]
- Plevris, V. AI-Driven Innovations in Earthquake Risk Mitigation: A Future-Focused Perspective. Geosciences 2024, 14, 244. [Google Scholar] [CrossRef]
- Solorzano, G.; Plevris, V. ANN-based surrogate model for predicting the lateral load capacity of RC shear walls. In Proceedings of the 8th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2022), Oslo, Norway, 5–9 June 2022. [Google Scholar]
- Inaudi, D. Structural health monitoring of bridges: General issues and applications. In Structural Health Monitoring of Civil Infrastructure Systems; Karbhari, V.M., Ansari, F., Eds.; Woodhead Publishing: Cambridge, UK, 2009; pp. 339–370. [Google Scholar] [CrossRef]
- Plevris, V.; Papazafeiropoulos, G. AI in Structural Health Monitoring for Infrastructure Maintenance and Safety. Infrastructures 2024, 9, 225. [Google Scholar] [CrossRef]
- Bianchini, I.; Argiento, R.; Auricchio, F.; Lanzarone, E. Efficient uncertainty quantification in stochastic finite element analysis based on functional principal components. Comput. Mech. 2015, 56, 533–549. [Google Scholar] [CrossRef]
- Hu, W.; Cheng, S.; Yan, J.; Cheng, J.; Peng, X.; Cho, H.; Lee, I. Reliability-based design optimization: A state-of-the-art review of its methodologies, applications, and challenges. Struct. Multidisc. Optim. 2024, 67, 168. [Google Scholar] [CrossRef]
- Yang, D.; Chen, G. Stochastic Dynamic Analysis of Large-Scale Nonlinear Structures. In Advances in Applied Nonlinear Dynamics, Vibration and Control-2021; Springer: Singapore, 2022; pp. 845–859. [Google Scholar] [CrossRef]
- Barchiesi, E. Multi-scale and multi-physics: Towards next-generation engineering materials. Contin. Mech. Thermodyn. 2020, 32, 541–554. [Google Scholar] [CrossRef]
- Bayat, M.; Dong, W.; Thorborg, J.; To, A.C.; Hattel, J.H. A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies. Addit. Manuf. 2021, 47, 102278. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plevris, V.; Georgioudakis, M.; Kioumarsi, M. Computational Methods in Structural Engineering: Current Advances and Future Perspectives. Computation 2025, 13, 224. https://doi.org/10.3390/computation13090224
Plevris V, Georgioudakis M, Kioumarsi M. Computational Methods in Structural Engineering: Current Advances and Future Perspectives. Computation. 2025; 13(9):224. https://doi.org/10.3390/computation13090224
Chicago/Turabian StylePlevris, Vagelis, Manolis Georgioudakis, and Mahdi Kioumarsi. 2025. "Computational Methods in Structural Engineering: Current Advances and Future Perspectives" Computation 13, no. 9: 224. https://doi.org/10.3390/computation13090224
APA StylePlevris, V., Georgioudakis, M., & Kioumarsi, M. (2025). Computational Methods in Structural Engineering: Current Advances and Future Perspectives. Computation, 13(9), 224. https://doi.org/10.3390/computation13090224