A Quantitative Structure–Activity Relationship Study of the Anabolic Activity of Ecdysteroids
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset and Biological Data
2.2. Computational Approach
2.3. Cheminformatics Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Isenmann, E.; Ambrosio, G.; Joseph, J.F.; Mazzarino, M.; de la Torre, X.; Zimmer, P.; Kazlauskas, R.; Goebel, C.; Botrè, F.; Diel, P.; et al. Ecdysteroids as non-conventional anabolic agent: Performance enhancement by ecdysterone supplementation in humans. Arch. Toxicol. 2019, 93, 1807–1816. [Google Scholar] [CrossRef]
- Parr, M.K.; Botrè, F.; Naß, A.; Hengevoss, J.; Diel, P.; Wolber, G. Ecdysteroids: A novel class of anabolic agents? Biol. Sport 2015, 32, 169–173. [Google Scholar] [CrossRef]
- Syrov, V.N. Comparative experimental investigation of the anabolic activity of phytoecdysteroids and steranabols. Pharm. Chem. J. 2000, 34, 193–197. [Google Scholar] [CrossRef]
- Yusupova, U.Y.; Usmanov, D.A.; Ramazonov, N.S. Phytoecdysteroids from the Plant Dianthus helenae. Chem. Nat. Compd. 2019, 55, 393–394. [Google Scholar] [CrossRef]
- Yusupova, U.Y.; Usmanov, D.A.; Ramazonov, N.S. Phytoecdysteroids from the Aerial Part of Silene popovii. Chem. Nat. Compd. 2020, 56, 562–563. [Google Scholar] [CrossRef]
- Wilborn, C.D.; Taylor, L.W.; Campbell, B.I.; Kerksick, C.; Rasmussen, C.J.; Greenwood, M.; Kreider, R.B. Effects of methoxyisoflavone, ecdysterone, and sulfo-polysaccharide supplementation on training adaptations in resistance-trained males. J. Int. Soc. Sports Nutr. 2006, 3, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Sláma, K.; Koudela, K.; Tenora, J.; Maťhová, A. Insect hormones in vertebrates: Anabolic effects of 20-hydroxyecdysone in Japanese quail. Experientia 1996, 52, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.-P.; Forman, B.M.; Jiang, Z.; Cherbas, L.; Chen, J.D.; McKeown, M.; Cherbas, P.; Evans, R.M. Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 1993, 366, 476–479. [Google Scholar] [CrossRef]
- Tomaschko, K.-H. Nongenomic effects of ecdysteroids. Arch. Insect Biochem. Physiol. 1999, 41, 89–98. [Google Scholar] [CrossRef]
- Cherbas, L.; Yonge, C.D.; Cherbas, P.; Williams, C.M. The morphological response of Kc-H cells to ecdysteroids: Hormonal specificity. Wilhelm Roux’s Arch. Dev. Biol. 1980, 189, 1–15. [Google Scholar] [CrossRef]
- Lafont, R.; Dauphin–Villemant, C.; Warren, J.T.; Rees, H. Ecdysteroid Chemistry and Biochemistry. Compr. Mol. Insect Sci. 2005, 3, 125–195. [Google Scholar] [CrossRef]
- Sláma, K.; Abubakirov, N.K.; Gorovits, M.B.; Baltaev, U.A.; Saatov, Z. Hormonal activity of ecdysteroids from certain asiatic plants. Insect Biochem. Mol. Biol. 1993, 23, 181–185. [Google Scholar] [CrossRef]
- Spindler-Barth, M.; Quack, S.; Rauch, P.; Spindler, K.-D. Biological effects of muristerone A and turkesterone on the epithelial cell line from Chironomus tentans (Diptera: Chironomidae) and correlation with binding affinity to the ecdysteroid receptor. Eur. J. Entomol. 1997, 94, 161–166. [Google Scholar]
- Clément, C.Y.; Bradbrook, D.A.; Lafont, R.; Dinan, L. Assessment of a microplate-based bioassay for the detection of ecdysteroid-like or antiecdysteroid activities. Insect Biochem. Mol. Biol. 1993, 23, 187–193. [Google Scholar] [CrossRef]
- Jagiello, K.; Grzonkowska, M.; Swirog, M.; Ahmed, L.; Rasulev, B.; Avramopoulos, A.; Papadopoulos, M.G.; Leszczynski, J.; Puzyn, T. Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives. J. Nanoparticle Res. Interdiscip. Forum Nanoscale Sci. Technol. 2016, 18, 256. [Google Scholar] [CrossRef]
- Juretic, D.; Kusic, H.; Dionysiou, D.D.; Rasulev, B.; Loncaric Bozic, A. Modeling of photooxidative degradation of aromatics in water matrix; combination of mechanistic and structural-relationship approach. Chem. Eng. J. 2014, 257, 229–241. [Google Scholar] [CrossRef]
- Rasulev, B. Recent Developments in 3D QSAR and Molecular Docking Studies of Organic and Nanostructures. In Handbook of Computational Chemistry; Springer: Dordrecht, The Netherlands, 2016; pp. 1–29. [Google Scholar] [CrossRef]
- Turabekova, M.A.; Rasulev, B.F.; Dzhakhangirov, F.N.; Salikhov, S.I. Aconitum and Delphinium alkaloids: “Drug-likeness” descriptors related to toxic mode of action. Environ. Toxicol. Pharmacol. 2008, 25, 310–320. [Google Scholar] [CrossRef]
- Turabekova, M.A.; Rasulev, B.F.; Dzhakhangirov, F.N.; Leszczynska, D.; Leszczynski, J. Aconitum and Delphinium alkaloids of curare-like activity. QSAR Anal. Mol. Docking Alkaloids Into AChBP. Eur. J. Med. Chem. 2010, 45, 3885–3894. [Google Scholar] [CrossRef]
- Toropova, A.P.; Toropov, A.A.; Rasulev, B.F.; Benfenati, E.; Gini, G.; Leszczynska, D.; Leszczynski, J. QSAR models for ACE-inhibitor activity of tri-peptides based on representation of the molecular structure by graph of atomic orbitals and SMILES. Struct. Chem. 2012, 23, 1873–1878. [Google Scholar] [CrossRef]
- Toropov, A.A.; Toropova, A.P.; Rasulev, B.F.; Benfenati, E.; Gini, G.; Leszczynska, D.; Leszczynski, J. Coral: QSPR modeling of rate constants of reactions between organic aromatic pollutants and hydroxyl radical. J. Comput. Chem. 2012, 33, 1902–1906. [Google Scholar] [CrossRef] [PubMed]
- Usmanov, D.; Rasulev, B.; Syrov, V.; Yusupova, U.; Ramazonov, N. Structure-Hepatoprotective Activity Relationship Study of Iridoids. Int. J. Quant. Struct.-Prop. Relatsh. 2020, 5, 108–118. [Google Scholar] [CrossRef]
- Wurtz, J.M.; Guillot, B.; Fagart, J.; Moras, D.; Tietjen, K.; Schindler, M. A new model for 20-hydroxyecdysone and dibenzoylhydrazine binding: A homology modeling and docking approach. Protein Sci. A Publ. Protein Soc. 2000, 9, 1073–1084. [Google Scholar] [CrossRef] [PubMed]
- Dinan, L. Ecdysteroid Structure-Activity Relationships. Bioact. Nat. Prod. 2003, 29 Pt. J, 3–71. [Google Scholar] [CrossRef]
- Dinan, L.; Sarker, S.D.; Bourne, P.; Whiting, P.; Ik, V.; Rees, H.H. Phytoecdysteroids in seeds and plants of Rhagodia baccata (Labill.) Moq. (Chenopodiaceae). Arch. Insect Biochem. Physiol. 1999, 41, 18–23. [Google Scholar] [CrossRef]
- Dinan, L.; Hormann, R.E.; Fujimoto, T. An extensive ecdysteroid CoMFA. J Comput Aided Mol Des 1999, 13, 185–207. [Google Scholar] [CrossRef]
- Syrov, V.N.; Saatov, Z.; Sagdullaev, S.S.; Mamatkhanov, A.U. Study of the Structure—Anabolic Activity Relationship for Phytoecdysteroids Extracted from Some Plants of Central Asia. Pharm. Chem. J. 2001, 35, 667–671. [Google Scholar] [CrossRef]
- Coleman, W.F.; Arumainayagam, C.R. HyperChem 5 (by Hypercube, Inc.). J. Chem. Educ. 1998, 75, 416. [Google Scholar] [CrossRef][Green Version]
- Rocha, G.B.; Freire, R.O.; Simas, A.M.; Stewart, J.J.P. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comput. Chem. 2006, 27, 1101–1111. [Google Scholar] [CrossRef]
- Davis, L. Handbook of Genetic Algorithms; Van Nostrand Reinhold: New York, NY, USA, 1991. [Google Scholar]
- Devillers, J. Genetic Algorithms in Computer-Aided Molecular Design. In Genetic Algorithms in Molecular Modeling; Academic Press: Cambridge, MA, USA, 1996; pp. 1–34. [Google Scholar] [CrossRef]
- Gramatica, P.; Cassani, S.; Chirico, N. QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J. Comput. Chem. 2014, 35, 1036–1044. [Google Scholar] [CrossRef]
- Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem. 2013, 34, 2121–2132. [Google Scholar] [CrossRef]
- Toddeschini, R.; Consonni, V.; Mauri, A.; Pavan, M. Dragon Software for the Calculation of Molecular Descriptors, Version 6 for Windows; Talete SRL: Milan, Italy, 2014. [Google Scholar]
- Roy, A.B.; Basak, S.C.; Harriss, D.K.; Magnuson, V.R. NEIGHBORHOOD COMPLEXITIES AND SYMMETRY OF CHEMICAL GRAPHS AND THEIR BIOLOGICAL APPLICATIONS. In Mathematical Modelling in Science and Technology; Pergamon Press: Oxford, UK, 1984; pp. 745–750. [Google Scholar] [CrossRef]
- Najafi, A.; Sobhanardakani, S.; Marjani, M. Exploring QSAR for Antimalarial Activities and Drug Distribution within Blood of a Series of 4-Aminoquinoline Drugs Using Genetic-MLR. J. Chem. 2013, 2013, 560415. [Google Scholar] [CrossRef]
- Todeschini, R.; Lasagni, M.; Marengo, E. New molecular descriptors for 2D and 3D structures. Theory. J. Chemom. 1994, 8, 263–272. [Google Scholar] [CrossRef]
- Todeschini, R.; Gramatica, P. 3D-modelling and Prediction by WHIM Descriptors. Part 5. Theory Development and Chemical Meaning of WHIM Descriptors. Quant. Struct.-Act. Relatsh. 1997, 16, 113–119. [Google Scholar] [CrossRef]
- Akbar, J.; Iqbal, S.; Batool, F.; Karim, A.; Chan, K.W. Predicting retention times of naturally occurring phenolic compounds in reversed-phase liquid chromatography: A Quantitative Structure-Retention Relationship (QSRR) approach. Int. J. Mol. Sci. 2012, 13, 15387–15400. [Google Scholar] [CrossRef]
- Voelkel, A. Structural descriptors in organic chemistry—New topological parameter based on electrotopological state of graph vertices. Comput. Chem. 1994, 18, 1–4. [Google Scholar] [CrossRef]
- Ambre, P.; Wavhale, R.; Coutinho, E. New Horizons in Antimalarial Drug Discovery in the Last Decade by Chemoinformatic Approaches. Comb. Chem. High Throughput Screen. 2015, 18, 129–150. [Google Scholar] [CrossRef]
- Ghose, A.K.; Crippen, G.M. Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J. Chem. Inf. Comput. Sci. 1987, 27, 21–35. [Google Scholar] [CrossRef]
- Ghose, A.K.; Crippen, G.M. Atomic Physicochemical Parameters for Three-Dimensional Structure-Directed Quantitative Structure-Activity Relationships I. Partition Coefficients as a Measure of Hydrophobicity. J. Comput. Chem. 1986, 7, 565–577. [Google Scholar] [CrossRef]
No. | Ecdysteroids’ List | Activity (Radioactivity, cpm/g) | Log[AA] | Log[AA] Calc for 2-Desc. Model | Residual |
---|---|---|---|---|---|
1 | 20-hydroxyecdysone | 228.633 ± 8.683 * | 6.947 | 6.891 | −0.056 |
2 | ViticosteroneE | 209.016 ± 1.414 * | 6.879 | 6.926 | 0.047 |
3 | 20-hydroxyecdysone 2,3,22-triacetate | 211.172 ± 2.562 * | 6.957 | 6.891 | −0.066 |
4 | 20-hydroxyecdysone 2,3,20,22-tetraacetate | 203.142 ± 2.488 * | 6.936 | 6.670 | −0.266 |
5 *** | 20-hydroxyecdysone 2,3-monoacetonide | 169.810 ± 2.862 * | 6.539 | 6.486 | −0.053 |
6 | 20-hydroxyecdysone 2,3-20,22-diacetonide | 150.520 ± 3.574 ** | 6.193 | 6.251 | 0.058 |
7 | 20-hydroxyecdysone 22-benzoate | 188.850 ± 2.890 * | 6.786 | 6.655 | −0.131 |
8 | 20-hydroxyecdysone 22-benzoate 2,3-monoacetonide | 163.280 ± 5.280 * | 6.523 | 6.541 | 0.018 |
9 | 2-deoxy-20-hydroxyecdysone | 188.533 ± 4.872 * | 6.683 | 6.655 | −0.028 |
10 *** | Ecdysone | 158.200 ± 3.629 * | 6.302 | 6.450 | 0.148 |
11 | 2-deoxyecdysone | 153.220 ± 4.830 ** | 6.173 | 6.095 | −0.078 |
12 | 2-deoxyecdysone 22-acetate | 152.720 ± 4.624 * | 6.199 | 6.367 | 0.168 |
13 | SileneosideA | 236.450 ± 7.167 * | 7.108 | 7.046 | −0.062 |
14 | SileneosideE | 177.482 ± 4.896 * | 6.698 | 6.810 | 0.112 |
15 *** | SileneosideC | 184.120 ± 2.440 | 6.796 | 6.873 | 0.077 |
16 | Cyasterone | 241.750 ± 2.522 * | 7.039 | 7.077 | 0.038 |
17 | Cyasterone 2,3,22-triacetate | 218.362 ± 5.270 * | 7.024 | 7.113 | 0.089 |
18 | Cyasterone 22-acetate | 266.166 ± 2.363 * | 7.164 | 7.111 | −0.053 |
19 | Turkesterone | 264.512 ± 6.012 * | 7.104 | 7.093 | −0.011 |
20 *** | Turkesteronetetraacetate | 255.250 ± 3.798 * | 7.198 | 7.010 | −0.188 |
21 | PolypodineB | 196.890 ± 8.250 * | 6.777 | 6.888 | 0.111 |
22 | IntegristeroneA | 175.520 ± 5.018 * | 6.587 | 6.717 | 0.130 |
23 | 24(28)-dehydromakisteronA | 219.400 ± 2.758 * | 6.912 | 6.891 | −0.021 |
No. | E, kcal/mol | Hyener * | Log P | Refc | Polar | HOMO | LUMO | µ | µx | µy | µz |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | −7703.24 | −13.36 | 1.79 | 128.87 | 50.94 | −9.99 | 0.16 | 4.31 | −0.14 | −3.58 | −2.39 |
2 | −8249.68 | −10.64 | 1.92 | 138.02 | 54.7 | −10.06 | 0.10 | 1.18 | 0.31 | −0.79 | −0.82 |
3 | −9343.35 | −4.5 | 2.18 | 156.33 | 62.21 | −10.12 | 0.05 | 2.77 | −2.67 | −0.02 | 0.69 |
4 | −9890.02 | −2.41 | 2.31 | 165.48 | 65.96 | −10.02 | 0.14 | 1.79 | −0.39 | −1.59 | 0.70 |
5 | −8424.28 | −7.07 | 3.17 | 141.08 | 55.67 | −10.01 | 0.18 | 5.96 | −0.51 | −5.28 | −2.70 |
6 | −9148.60 | −4.23 | 4.55 | 153.28 | 60.4 | −10.11 | 0.08 | 3.58 | −0.43 | −2.64 | −2.38 |
7 | −9175.95 | −13.39 | 3.07 | 162.33 | 62.52 | −9.82 | −0.15 | 5.16 | 2.30 | −4.44 | −1.24 |
8 | −9894.08 | −6.81 | 4.45 | 174.54 | 67.25 | −9.86 | −0.19 | 6.46 | 0.61 | −5.94 | −2.46 |
9 | −7597.34 | −8.53 | 2.46 | 127.51 | 50.3 | −9.88 | 0.28 | 5.98 | 0.97 | −4.98 | −3.15 |
10 | −7598.16 | −11.72 | 2.81 | 127.42 | 50.3 | −10.01 | 0.15 | 4.31 | 0.79 | −3.55 | −2.32 |
11 | −7494.59 | −7.21 | 3.58 | 126.06 | 49.67 | −9.94 | 0.22 | 4.53 | 1.30 | −3.38 | −2.71 |
12 | −8043.12 | −5.68 | 3.71 | 135.21 | 53.42 | −10.02 | 0.15 | 3.75 | −0.78 | −3.64 | −0.42 |
13 | −9766.51 | −25.89 | 0.57 | 161.29 | 64.36 | -9.99 | 0.15 | 3.61 | 1.27 | −3.23 | −0.98 |
14 | −9554.91 | −18.47 | 2.36 | 158.47 | 63.09 | −9.79 | 0.36 | 4.64 | 2.13 | −4.12 | 0.18 |
15 | −9864.45 | −27.44 | -0.05 | 162.49 | 65 | −10.02 | 0.12 | 4.71 | 1.88 | −3.77 | −2.09 |
16 | −8134.09 | −12.63 | 2.14 | 136.05 | 53.92 | −10.18 | −0.003 | 3.66 | 3.26 | 1.35 | 0.99 |
17 | −9775.19 | −3.98 | 2.52 | 163.51 | 65.19 | −10.16 | 0.01 | 4.81 | 3.71 | 0.74 | 2.96 |
18 | −8682.18 | −10.76 | 2.27 | 145.21 | 57.68 | −10.19 | −0.02 | 6.65 | 6.13 | 0.35 | 2.55 |
19 | −7798.46 | −14.18 | 0.8 | 130.46 | 51.58 | −9.98 | 0.13 | 7.27 | 0.73 | −5.45 | −4.75 |
20 | −9985.27 | −6.43 | 1.32 | 167.07 | 66.6 | −10.25 | −0.08 | 6.96 | 4.01 | −5.27 | −2.15 |
21 | −7797.66 | −15.02 | 1.02 | 130.23 | 51.58 | −10.01 | 0.01 | 7.19 | −0.06 | −6.23 | −3.60 |
22 | −7804.91 | −16.11 | 1.16 | 130.08 | 51.58 | −10.08 | 0.05 | 4.29 | 1.62 | −3.35 | −2.14 |
23 | −7851.29 | −13.45 | 1.87 | 133.04 | 52.58 | −9.42 | 0.05 | 2.81 | 1.98 | −1.78 | −0.92 |
Model, No./# of Descriptors | Training Set, n = 19 | Prediction Set, n = 4 | ||||
---|---|---|---|---|---|---|
R2 | s | F | Q2 | R2 | s | |
- (1 descr-s) | 0.67 | 0.19 | 33.87 | 0.58 | 0.53 | 0.27 |
1 (2 descr-s) | 0.89 | 0.11 | 64.66 | 0.84 | 0.89 | 0.13 |
2 (3 descr-s) | 0.88 | 0.12 | 37.68 | 0.83 | 0.97 | 0.11 |
3 (4 descr-s) | 0.95 | 0.08 | 61.98 | 0.91 | 0.89 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usmanov, D.; Yusupova, U.; Syrov, V.; Casanola-Martin, G.M.; Rasulev, B. A Quantitative Structure–Activity Relationship Study of the Anabolic Activity of Ecdysteroids. Computation 2025, 13, 195. https://doi.org/10.3390/computation13080195
Usmanov D, Yusupova U, Syrov V, Casanola-Martin GM, Rasulev B. A Quantitative Structure–Activity Relationship Study of the Anabolic Activity of Ecdysteroids. Computation. 2025; 13(8):195. https://doi.org/10.3390/computation13080195
Chicago/Turabian StyleUsmanov, Durbek, Ugiloy Yusupova, Vladimir Syrov, Gerardo M. Casanola-Martin, and Bakhtiyor Rasulev. 2025. "A Quantitative Structure–Activity Relationship Study of the Anabolic Activity of Ecdysteroids" Computation 13, no. 8: 195. https://doi.org/10.3390/computation13080195
APA StyleUsmanov, D., Yusupova, U., Syrov, V., Casanola-Martin, G. M., & Rasulev, B. (2025). A Quantitative Structure–Activity Relationship Study of the Anabolic Activity of Ecdysteroids. Computation, 13(8), 195. https://doi.org/10.3390/computation13080195