Efficient Numerical Solutions for Fuzzy Time Fractional Diffusion Equations Using Two Explicit Compact Finite Difference Methods
Abstract
:1. Introduction
2. Preliminaries
3. Fuzzy Compact Finite Difference Scheme (FCFD)
4. Compact FTCS Scheme for the Solution of FTFDE
5. Compact Saulyev Scheme for the Solution of FTFDE
6. The Stability of Compact FTCS for FTFDE
7. The Truncation Error and Convergence
8. Numerical Results and Discussion
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Batiha, B. New Solution of the Sine-Gordon Equation by the Daftardar-Gejji and Jafari Method. Symmetry 2022, 14, 57. [Google Scholar] [CrossRef]
- Ala’yed, O.; Batiha, B.; Abdelrahim, R. On the numerical solution of the nonlinear Bratu type equation via quintic B-spline method. J. Interdiscip. Math. 2019, 22, 405–413. [Google Scholar] [CrossRef]
- Batiha, B.; Ghanim, F.; Alayed, O.; Hatamleh, R.; Heilat, A.S.; Zureigat, H.; Bazighifan, O. Solving Multispecies Lotka–Volterra Equations by the Daftardar-Gejji and Jafari Method. Int. J. Math. Math. Sci. 2022, 2022, 1839796. [Google Scholar] [CrossRef]
- Batiha, B. A variational iteration method for solving the nonlinear Klein-Gordon equation. Aust. J. Basic Appl. Sci. 2009, 3, 3876–3890. [Google Scholar]
- Batiha, B.; Ghanim, F. Numerical implementation of Daftardar-Gejji and Jafari method to the quadratic Riccati equation. Bull. Acad. Stiinte Repub. Mold. Mat. 2021, 3, 21–29. [Google Scholar]
- Bakalis, E.; Zerbetto, F. Time Fractional Diffusion Equations and Analytical Solvable Models. J. Phys. Conf. Ser. 2016, 738, 012106. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Arqub, O.A. Computational algorithm for solving Fredholm time-fractional partial integrodifferential equations of Dirichlet functions type with error estimates. Appl. Math. Comput. 2019, 342, 280–294. [Google Scholar] [CrossRef]
- Almutairi, M.; Zureigat, H.; Izani Ismail, A.; Fareed Jameel, A. Fuzzy numerical solution via finite difference scheme of wave equation in double parametrical fuzzy number form. Mathematics 2021, 9, 667. [Google Scholar] [CrossRef]
- Al-Smadi, M. Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation. Ain Shams Eng. J. 2017, 9, 2517–2525. [Google Scholar] [CrossRef]
- Arqub, O.A.; Al-Smadi, M. Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space. Chaos Solitons Fractals 2018, 117, 161–167. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Freihat, A.; Khalil, H.; Momani, S.; Ali Khan, R. Numerical multistep approach for solving fractional partial differential equations. Int. J. Comput. Methods 2017, 14, 1750029. [Google Scholar] [CrossRef]
- Das, S. Analytical solution of a fractional diffusion equation by variational iteration method. Comput. Math. Appl. 2009, 57, 483–487. [Google Scholar] [CrossRef]
- Batiha, B. Innovative Solutions for the Kadomtsev-Petviashvili Equation via the New Iterative Method. Math. Probl. Eng. 2024, 2024, 5541845. [Google Scholar] [CrossRef]
- Fardi, M.; Zaky, M.A.; Hendy, A.S. Nonuniform difference schemes for multi-term and distributed-order fractional parabolic equations with fractional Laplacian. Math. Comput. Simul. 2023, 206, 614–635. [Google Scholar] [CrossRef]
- Fardi, M.; Al-Omari SK, Q.; Araci, S. A pseudo-spectral method based on reproducing kernel for solving the time-fractional diffusion-wave equation. Adv. Contin. Discret. Models 2022, 2022, 54. [Google Scholar] [CrossRef]
- Mohammadi, S.; Ghasemi, M.; Fardi, M. A fast Fourier spectral exponential time-differencing method for solving the time-fractional mobile–immobile advection–dispersion equation. Comput. Appl. Math. 2022, 41, 264. [Google Scholar] [CrossRef]
- Zureigat, H.; Ismail, A.I.; Sathasivam, S. A compact Crank–Nicholson scheme for the numerical solution of fuzzy time fractional diffusion equations. Neural Comput. Appl. 2020, 32, 6405–6412. [Google Scholar] [CrossRef]
- Fardi, M.; Khan, Y. A fast difference scheme on a graded mesh for time-fractional and space distributed-order diffusion equation with nonsmooth data. Int. J. Mod. Phys. B 2022, 36, 2250076. [Google Scholar] [CrossRef]
- Zureigat, H.; Al-Smadi, M.; Al-Khateeb, A.; Al-Omari, S.; Alhazmi, S. Numerical Solution for Fuzzy Time-Fractional Cancer Tumor Model with a Time-Dependent Net Killing Rate of Cancer Cells. Int. J. Environ. Res. Public Health 2023, 20, 3766. [Google Scholar] [CrossRef]
- Al-khateeb, A.; Zureigat, H.; Ala’yed, O.; Bawaneh, S. Ulam–Hyers Stability and Uniqueness for Nonlinear Sequential Fractional Differential Equations Involving Integral Boundary Conditions. Fractal Fract. 2021, 5, 235. [Google Scholar] [CrossRef]
- Fardi, M.; Ghasemi, M. A numerical solution strategy based on error analysis for time-fractional mobile/immobile transport model. Soft Comput. 2021, 25, 11307–11331. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998; Volume 198. [Google Scholar]
- Lin, Y.; Xu, C. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225, 1533–1552. [Google Scholar] [CrossRef]
- Ma, Y. Two implicit finite difference methods for time fractional diffusion equation with source term. J. Appl. Math. Bioinform. 2014, 4, 125–145. [Google Scholar]
- Cui, M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228, 7792–7804. [Google Scholar] [CrossRef]
- Gao, G.H.; Sun, Z.Z. A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 2011, 230, 586–595. [Google Scholar] [CrossRef]
- Karatay, I.; Bayramoglu, S.R. High-order compact difference scheme for the numerical solution of time fractional heat equations. Sci. World J. 2014, 2014, 642989. [Google Scholar] [CrossRef]
- Al-Shibani, F.S.; Ismail AI, M.; Abdullah, F.A. Compact Finite Difference Methods for the Solution of One Dimensional Anomalous Sub-Diffusion Equation. Gen 2013, 18, 104–119. [Google Scholar]
- Ghazanfari, B.; Ebrahimi, P. Differential Transformation Method for Solving Fuzzy Fractional Heat Equations. Int. J. Math. Model Comput. 2015, 5, 81–89. [Google Scholar]
- Salah, A.; Khan, M.; Gondal, M.A. A novel solution procedure for fuzzy fractional heat equations by homotopy analysis transform method. Neural Comput. Appl. 2013, 23, 269–271. [Google Scholar] [CrossRef]
- Chakraverty, S.; Tapaswini, S. Non-probabilistic solutions of imprecisely defined fractional-order diffusion equations. Chin. Phys. B 2014, 23, 120–202. [Google Scholar] [CrossRef]
- Zureigat, H.; Ismail, A.I.; Sathasivam, S. Numerical solutions of fuzzy fractional diffusion equations by an implicit finite difference scheme. Neural Comput. Appl. 2018, 31, 1–10. [Google Scholar] [CrossRef]
- Karatay, İ.; Bayramoğlu, Ş.R.; Şahin, A. Implicit difference approximation for the time fractional heat equation with the nonlocal condition. Appl. Numer. Math. 2011, 61, 1281–1288. [Google Scholar] [CrossRef]
- Yuste, S.B. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 2006, 216, 264–274. [Google Scholar] [CrossRef]
- Ding, H.F.; Zhang, Y.X. Notes on Implicit finite difference approximation for time fractional diffusion equations [Comput. Math. Appl. 56 (2008) 1138–1145]. Comput. Math. Appl. 2011, 61, 2924–2928. [Google Scholar] [CrossRef]
- Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K. Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation. Appl. Math. Comput. 2007, 191, 12–20. [Google Scholar] [CrossRef]
- Zureigat, H.; Al-Smadi, M.; Al-Khateeb, A.; Al-Omari, S.; Alhazmi, S.E. Fourth-Order Numerical Solutions for a Fuzzy Time-Fractional Convection–Diffusion Equation under Caputo Generalized Hukuhara Derivative. Fractal Fract. 2022, 7, 47. [Google Scholar] [CrossRef]
- Arqub, O.A.; Mohammed, A.S.; Momani, S.; Hayat, T. Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. 2016, 20, 3283–3302. [Google Scholar] [CrossRef]
- Arqub, O.A.; Al-Smadi, M.; Momani, S.; Hayat, T. Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput. 2017, 21, 7191–7206. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, V. An application of variational iteration method for solving fuzzy time-fractional diffusion equations. Neural Comput. Appl. 2021, 33, 17659–17668. [Google Scholar] [CrossRef]
CFTCS | Compact Saulyev | ||||||
---|---|---|---|---|---|---|---|
Lower solution when | |||||||
0 | 0 | 0 | 0 | ||||
Upper solution when | 0 | ||||||
0.2 | |||||||
0.4 | |||||||
0.6 | |||||||
0.8 | |||||||
1 | 0 | 0 | 0 | 0 | 0 |
CFTCS | Compact Saulyev | ||||||
---|---|---|---|---|---|---|---|
Lower solution when .4 | |||||||
0 | 0 | 0 | 0 | ||||
Upper solution when | 0 | ||||||
0.2 | |||||||
0.4 | |||||||
0.6 | |||||||
0.8 | |||||||
1 | 0 | 0 | 0 | 0 |
CFTCS | Compact Saulyev | Variational Iteration Method | |||||
---|---|---|---|---|---|---|---|
Lower solution When | |||||||
0 | 0 | 0 | 0 | 0 | 0 | ||
Upper solution when | 0 | ||||||
0.2 | |||||||
0.4 | |||||||
0.6 | |||||||
0.8 | |||||||
1 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batiha, B. Efficient Numerical Solutions for Fuzzy Time Fractional Diffusion Equations Using Two Explicit Compact Finite Difference Methods. Computation 2024, 12, 79. https://doi.org/10.3390/computation12040079
Batiha B. Efficient Numerical Solutions for Fuzzy Time Fractional Diffusion Equations Using Two Explicit Compact Finite Difference Methods. Computation. 2024; 12(4):79. https://doi.org/10.3390/computation12040079
Chicago/Turabian StyleBatiha, Belal. 2024. "Efficient Numerical Solutions for Fuzzy Time Fractional Diffusion Equations Using Two Explicit Compact Finite Difference Methods" Computation 12, no. 4: 79. https://doi.org/10.3390/computation12040079
APA StyleBatiha, B. (2024). Efficient Numerical Solutions for Fuzzy Time Fractional Diffusion Equations Using Two Explicit Compact Finite Difference Methods. Computation, 12(4), 79. https://doi.org/10.3390/computation12040079