Dynamic Modeling of Bacterial Cellulose Production Using Combined Substrate- and Biomass-Dependent Kinetics
Abstract
:1. Introduction
- A stepwise fitting procedure was proposed for model selection, leading to reduced computation effort. It includes a first calibration, in which only biomass and substrate concentrations are included in the cost function; a selection of the three most effective models in terms of AIC (lowest AIC); and a second calibration with only the three selected models, and biomass, substrate, and product concentrations are considered in the cost function.
- Different expressions of the specific growth rate are used, including combined substrate and biomass inhibition functions, and they are compared in terms of the Akaike Information Criterion (AIC).
- A modified product equation is proposed for a 500 rpm agitation rate, using a modified Monod substrate function, leading to improved prediction of BC productivity.
2. Materials and Methods
2.1. Experimental Data
2.2. Statistical Analysis: Performance Metrics
- The determination coefficient is calculated as follows [34,36]:
2.3. Model Formulation: Mass Balance Models
2.4. Model Formulation: Specific Growth Rate Expressions
- [M0a]
- [M0b]
- [M0c]
- [M0d]
- [M0e]
- [M1a]
- [M1b]
- [M1c]
- [M2a]
- [M2b]
- [M2c]
- [M3a]
- [M3b]
- [M4b]
2.5. Parameter Estimation
- For calibration of and models
- For calibration of , , and models
3. Results
- AIC: M2c, M3a, M2a, M1c, M3b, M1a, M0b, M0e, M1b, M0a, M0c, M4b, M0d, and M2b.
- RMSEx: M3a, M2c, M2a, M1c, M0a, M1b, M4b, M3b, M1a, M0e, M0b, M0c, M0d, and M2b.
- RMSEs: M2c, M3a, M2a, M3b, M4b, M0e, M1a, M1b, M1c, M0b, M0d, M0c, M0a, and M2b.
- R2x: M3a, M2c, M2a, M1c, M0a, M1b, M4b, M3b, M1a, M0e, M0b, M0c, M0d, and M2b.
- R2s: M2c, M3a, M2a, M3b, M4b, M0e, M1a, M1b, M1c, M0b, M0d, M0c, M0a, and M2b.
- AIC: M1c, M0b, M1b, M0e, M0c, M2a, M2c, M0d, M3a, M3b, M0a, M4b, M2b, and M1a.
- RMSEx: M0a, M1b, M2a, M1c, M3a, M4b, M0d, M0b, M0c, M0e, M2c, M3b, M2b, and M1a.
- RMSEs: M2c, M1c, M3a, M2a, M0e, M1b, M0d, M0b, M0c, M3b, M4b, M0a, M2b, and M1a.
- R2x: M0a, M1b, M2a, M1c, M3a, M4b, M0d, M0b, M0c, M0e, M3b, M2c, M2b, and M1a.
- R2s: M2c, M1c, M3a y M2a; M0e, M1b, M0d, M0b, M0c, M3b, M4b, M0a, M2b, and M1a.
4. Discussion
- A higher performance of monotonically increasing substrate models (Monod and Moser) compared to substrate inhibition models.
- A higher performance of the biomass function compared to , , and .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dikshit, P.K.; Kim, B.S. Bacterial Cellulose Production from Biodiesel–Derived Crude Glycerol, Magnetic Functionalization, and Its Application as Carrier for Lipase Immobilization. Int. J. Biol. Macromol. 2020, 153, 902–911. [Google Scholar] [CrossRef] [PubMed]
- Dhar, P.; Pratto, B.; Gonçalves Cruz, A.J.; Bankar, S. Valorization of Sugarcane Straw to Produce Highly Conductive Bacterial Cellulose / Graphene Nanocomposite Films through In Situ Fermentation: Kinetic Analysis and Property Evaluation. J. Clean. Prod. 2019, 238, 117859. [Google Scholar] [CrossRef]
- Rahman, S.S.A.; Vaishnavi, T.; Vidyasri, G.S.; Sathya, K.; Priyanka, P.; Venkatachalam, P.; Karuppiah, S. Production of Bacterial Cellulose Using Gluconacetobacter kombuchae Immobilized on Luffa aegyptiaca Support. Sci. Rep. 2021, 11, 2912. [Google Scholar] [CrossRef] [PubMed]
- Singhania, R.R.; Patel, A.K.; Tseng, Y.-S.; Kumar, V.; Chen, C.-W.; Haldar, D.; Saini, J.K.; Dong, C.-D. Developments in Bioprocess for Bacterial Cellulose Production. Bioresour. Technol. 2022, 344, 126343. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front. Bioeng. Biotechnol. 2020, 8, 605374. [Google Scholar] [CrossRef] [PubMed]
- Gorgieva, S.; Trček, J. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications. Nanomaterials 2019, 9, 1352. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, J.-J. Improvement of Bacterial Cellulose Fermentation by Metabolic Perturbation with Mixed Carbon Sources. Process Biochem. 2022, 122, 95–102. [Google Scholar] [CrossRef]
- Yang, Y.K.; Park, S.H.; Hwang, J.W.; Pyun, Y.R.; Kim, Y.S. Cellulose Production by Acetobacter xylinum BRC5 under Agitated Condition. J. Ferment. Bioeng. 1998, 85, 312–317. [Google Scholar] [CrossRef]
- Singhsa, P.; Narain, R.; Manuspiya, H. Physical Structure Variations of Bacterial Cellulose Produced by Different Komagataeibacter xylinus Strains and Carbon Sources in Static and Agitated Conditions. Cellulose 2018, 25, 1571–1581. [Google Scholar] [CrossRef]
- Sperotto, G.; Stasiak, L.G.; Godoi, J.P.M.G.; Gabiatti, N.C.; De Souza, S.S. A Review of Culture Media for Bacterial Cellulose Production: Complex, Chemically Defined and Minimal Media Modulations. Cellulose 2021, 28, 2649–2673. [Google Scholar] [CrossRef]
- Urbina, L.; Corcuera, M.Á.; Gabilondo, N.; Eceiza, A.; Retegi, A. A Review of Bacterial Cellulose: Sustainable Production from Agricultural Waste and Applications in Various Fields. Cellulose 2021, 28, 8229–8253. [Google Scholar] [CrossRef]
- Yamada, Y.; Yukphan, P.; Lan Vu, H.T.; Muramatsu, Y.; Ochaikul, D.; Tanasupawat, S.; Nakagawa, Y. Description of Komagataeibacter Gen. Nov., with Proposals of New Combinations (Acetobacteraceae). J. Gen. Appl. Microbiol. 2012, 58, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Laavanya, D.; Shirkole, S.; Balasubramanian, P. Current Challenges, Applications and Future Perspectives of SCOBY Cellulose of Kombucha Fermentation. J. Clean. Prod. 2021, 295, 126454. [Google Scholar] [CrossRef]
- Tonouchi, N.; Tsuchida, T.; Yoshinaga, F.; Beppu, T.; Horinouchi, S. Characterization of the Biosynthetic Pathway of Cellulose from Glucose and Fructose in Acetobacter xylinum. Biosci. Biotechnol. Biochem. 1996, 60, 1377–1379. [Google Scholar] [CrossRef]
- Changjin, S.; SeonYong, C.; Jieun, L.; Seong-jun, K. Isolation and Cultivation Characteristics of Acetobacter xylinum KJ-1 Producing Bacterial Cellulose in Shaking Cultures. J. Microbiol. Biotechnol. 2002, 12, 722–728. [Google Scholar]
- Yang, F.; Cao, Z.; Li, C.; Chen, L.; Wu, G.; Zhou, X.; Hong, F.F. A Recombinant Strain of Komagataeibacter xylinus ATCC 23770 for Production of Bacterial Cellulose from Mannose-Rich Resources. N. Biotechnol. 2023, 76, 72–81. [Google Scholar] [CrossRef]
- Liu, M.; Li, S.; Xie, Y.; Jia, S.; Hou, Y.; Zou, Y.; Zhong, C. Enhanced Bacterial Cellulose Production by Gluconacetobacter xylinus via Expression of Vitreoscilla Hemoglobin and Oxygen Tension Regulation. Appl. Microbiol. Biotechnol. 2018, 102, 1155–1165. [Google Scholar] [CrossRef]
- Yoshinaga, F.; Tonouchi, N.; Watanabe, K. Research Progress in Production of Bacterial Cellulose by Aeration and Agitation Culture and Its Application as a New Industrial Material. Biosci. Biotechnol. Biochem. 1997, 61, 219–224. [Google Scholar] [CrossRef]
- Naritomi, T.; Kouda, T.; Yano, H.; Yoshinaga, F. Effect of Ethanol on Bacterial Cellulose Production from Fructose in Continuous Culture. J. Ferment. Bioeng. 1998, 85, 598–603. [Google Scholar] [CrossRef]
- Chakraborty, K.; Saha, S.K.; Raychaudhuri, U.; Chakraborty, R. Vinegar Production from Vegetable Waste: Optimization of Physical Condition and Kinetic Modeling of Fermentation Process. Indian J. Chem. Technol. 2018, 24, 508–516. [Google Scholar] [CrossRef]
- Hornung, M.; Biener, R.; Schmauder, H.-P. Dynamic Modelling of Bacterial Cellulose Formation. Eng. Life Sci. 2009, 9, 342–347. [Google Scholar] [CrossRef]
- Sanjay, K.; Anand, A.P.; Veeranki, V.D.; Kannan, P. Kinetics of Growth on Dual Substrates, Production of Novel Glutaminase-Free L-Asparaginase and Substrates Utilization by Pectobacterium carotovorum MTCC 1428 in a Batch Bioreactor. Korean J. Chem. Eng. 2017, 34, 118–126. [Google Scholar] [CrossRef]
- Olszewska-Widdrat, A.; Babor, M.; Höhne, M.M.-C.; Alexandri, M.; López-Gómez, J.P.; Venus, J. A Mathematical Model-Based Evaluation of Yeast Extract’s Effects on Microbial Growth and Substrate Consumption for Lactic Acid Production by Bacillus Coagulans. Process Biochem. 2024, 146, 304–315. [Google Scholar] [CrossRef]
- Sharma, V.; Mishra, H.N. Unstructured Kinetic Modeling of Growth and Lactic Acid Production by Lactobacillus Plantarum NCDC 414 during Fermentation of Vegetable Juices. Lebenson. Wiss. Technol. 2014, 59, 1123–1128. [Google Scholar] [CrossRef]
- Gómez, J.M.; Cantero, D. Kinetics of Substrate Consumption and Product Formation in Closed Acetic Fermentation Systems. Bioprocess Eng. 1998, 18, 439–444. [Google Scholar] [CrossRef]
- Muloiwa, M.; Nyende-Byakika, S.; Dinka, M. Comparison of Unstructured Kinetic Bacterial Growth Models. S. Afr. J. Chem. Eng. 2020, 33, 141–150. [Google Scholar] [CrossRef]
- Manheim, D.C.; Detwiler, R.L.; Jiang, S.C. Application of Unstructured Kinetic Models to Predict Microcystin Biodegradation: Towards a Practical Approach for Drinking Water Treatment. Water Res. 2019, 149, 617–631. [Google Scholar] [CrossRef]
- Ingdal, M.; Johnsen, R.; Harrington, D.A. The Akaike Information Criterion in Weighted Regression of Immittance Data. Electrochim. Acta 2019, 317, 648–653. [Google Scholar] [CrossRef]
- Symonds, M.R.E.; Moussalli, A. A Brief Guide to Model Selection, Multimodel Inference and Model Averaging in Behavioural Ecology Using Akaike’s Information Criterion. Behav. Ecol. Sociobiol. 2011, 65, 13–21. [Google Scholar] [CrossRef]
- Cañete-Rodríguez, A.M.; Santos-Dueñas, I.M.; Jiménez-Hornero, J.E.; Torija-Martínez, M.J.; Mas, A.; García-García, I. An Approach for Estimating the Maximum Specific Growth Rate of Gluconobacter japonicus in Strawberry Purée without Cell Concentration Data. Biochem. Eng. J. 2016, 105, 314–320. [Google Scholar] [CrossRef]
- Reiniati, I.; Hrymak, A.N.; Margaritis, A. Kinetics of Cell Growth and Crystalline Nanocellulose Production by Komagataeibacter xylinus. Biochem. Eng. J. 2017, 127, 21–31. [Google Scholar] [CrossRef]
- Niknezhad, S.V.; Kianpour, S.; Jafarzadeh, S.; Alishahi, M.; Najafpour Darzi, G.; Morowvat, M.H.; Ghasemi, Y.; Shavandi, A. Biosynthesis of Exopolysaccharide from Waste Molasses Using Pantoea Sp. BCCS 001 GH: A Kinetic and Optimization Study. Sci. Rep. 2022, 12, 10128. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Kabir, K.M.A.; Tanimoto, J.; Saha, B.B. Study on Spirulina Platensis Growth Employing Non-Linear Analysis of Biomass Kinetic Models. Heliyon 2021, 7, e08185. [Google Scholar] [CrossRef]
- Acosta-Pavas, J.C.; Robles-Rodríguez, C.E.; Morchain, J.; Dumas, C.; Cockx, A.; Aceves-Lara, C.A. Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1. Fuel 2023, 344, 128106. [Google Scholar] [CrossRef]
- He, L.; Xu, Y.-Q.; Zhang, X.-H. Medium Factor Optimization and Fermentation Kinetics for Phenazine-1-Carboxylic Acid Production by Pseudomonas Sp. M18G. Biotechnol. Bioeng. 2008, 100, 250–259. [Google Scholar] [CrossRef]
- Shirsat, N.; Mohd, A.; Whelan, J.; English, N.J.; Glennon, B.; Al-Rubeai, M. Revisiting Verhulst and Monod Models: Analysis of Batch and Fed-Batch Cultures. Cytotechnology 2015, 67, 515–530. [Google Scholar] [CrossRef]
- Hodson, T.O. Root-Mean-Square Error (RMSE) or Mean Absolute Error (MAE): When to Use Them or Not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Portet, S. A Primer on Model Selection Using the Akaike Information Criterion. Infect Dis Model 2020, 5, 111–128. [Google Scholar] [CrossRef]
- Grisales Díaz, V.H.; Willis, M.J. Ethanol Production Using Zymomonas mobilis: Development of a Kinetic Model Describing Glucose and Xylose Co-Fermentation. Biomass Bioenergy 2019, 123, 41–50. [Google Scholar] [CrossRef]
- Dutta, K. Substrate Inhibition Growth Kinetics for Cutinase Producing Pseudomonas Cepacia Using Tomato-Peel Extracted Cutin. Chem. Biochem. Eng. Q. 2015, 29, 437–445. [Google Scholar] [CrossRef]
- Ghosh, S.; Chakraborty, R.; Chatterjee, G.; Raychaudhuri, U. Study on Fermentation Conditions of Palm Juice Vinegar by Response Surface Methodology and Development of a Kinetic Model. Braz. J. Chem. Eng. 2012, 29, 461–472. [Google Scholar] [CrossRef]
- Germec, M.; Karhan, M.; Demirci, A.; Turhan, I. Kinetic Modeling, Sensitivity Analysis, and Techno-Economic Feasibility of Ethanol Fermentation from Non-Sterile Carob Extract-Based Media in Saccharomyces Cerevisiae Biofilm Reactor under a Repeated-Batch Fermentation Process. Fuel 2022, 324, 124729. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, R.; Xu, L.; Zheng, W.; Sun, W. Fermentation Kinetics of Enzymatic Hydrolysis Bagasse Solutions for Producing L-Lactic Acid. Sugar Tech 2018, 20, 364–370. [Google Scholar] [CrossRef]
- Guo, S.; Li, B.; Yu, W.; Wilson, D.I.; Young, B.R. Which Model? Comparing Fermentation Kinetic Expressions for Cream Cheese Production. Can. J. Chem. Eng. 2021, 99, 2405–2427. [Google Scholar] [CrossRef]
- Iyyappan, J.; Bharathiraja, B.; Baskar, G.; Kamalanaban, E. Process Optimization and Kinetic Analysis of Malic Acid Production from Crude Glycerol Using Aspergillus Niger. Bioresour. Technol. 2019, 281, 18–25. [Google Scholar] [CrossRef]
- Belfares, L.; Perrier, M.; Ramsay, B.A.; Ramsay, J.A.; Jolicoeur, M.; Chavarie, C. Multi-Inhibition Kinetic Model for the Growth of Alcaligenes Eutrophus. Can. J. Microbiol. 1995, 41, 249–256. [Google Scholar] [CrossRef]
- Xu, P. Analytical Solution for a Hybrid Logistic-Monod Cell Growth Model in Batch and Continuous Stirred Tank Reactor Culture. Biotechnol. Bioeng. 2020, 117, 873–878. [Google Scholar] [CrossRef]
- Xu, S.; Xu, S.; Ge, X.; Tan, L.; Liu, T. Low-Cost and Highly Efficient Production of Bacterial Cellulose from Sweet Potato Residues: Optimization, Characterization, and Application. Int. J. Biol. Macromol. 2022, 196, 172–179. [Google Scholar] [CrossRef]
- Tinôco, D.; da Silveira, W.B. Kinetic Model of Ethanol Inhibition for Kluyveromyces Marxianus CCT 7735 (UFV-3) Based on the Modified Monod Model by Ghose & Tyagi. Biologia 2021, 76, 3511–3519. [Google Scholar] [CrossRef]
- de Farias Silva, C.E.; de Oliveira Cerqueira, R.B.; de Lima Neto, C.F.; de Andrade, F.P.; de Oliveira Carvalho, F.; Tonholo, J. Developing a Kinetic Model to Describe Wastewater Treatment by Microalgae Based on Simultaneous Carbon, Nitrogen and Phosphorous Removal. J. Environ. Chem. Eng. 2020, 8, 103792. [Google Scholar] [CrossRef]
- Mazzoleni, S.; Landi, C.; Cartenì, F.; de Alteriis, E.; Giannino, F.; Paciello, L.; Parascandola, P. A Novel Process-Based Model of Microbial Growth: Self-Inhibition in Saccharomyces cerevisiae Aerobic Fed-Batch Cultures. Microb. Cell Fact. 2015, 14, 109. [Google Scholar] [CrossRef] [PubMed]
- Edwards, V.H. The Influence of High Substrate Concentrations on Microbial Kinetics. Biotechnol. Bioeng. 1970, 12, 679–712. [Google Scholar] [CrossRef] [PubMed]
- Paul, T.; Baskaran, D.; Pakshirajan, K.; Pugazhenthi, G. Valorization of Refinery Wastewater for Lipid-Rich Biomass Production by Rhodococcus opacus in Batch System: A Kinetic Approach. Biomass Bioenergy 2020, 143, 105867. [Google Scholar] [CrossRef]
- Saravanan, P.; Pakshirajan, K.; Saha, P. Biodegradation Kinetics of Phenol by Predominantly Pseudomonas Sp. in a Batch Shake Flask. Desalination Water Treat. 2011, 36, 99–104. [Google Scholar] [CrossRef]
- Tsoularis, A.; Wallace, J. Analysis of Logistic Growth Models. Math. Biosci. 2002, 179, 21–55. [Google Scholar] [CrossRef]
- de Andrade, R.R.; Maugeri Filho, F.; Maciel Filho, R.; da Costa, A.C. Kinetics of Ethanol Production from Sugarcane Bagasse Enzymatic Hydrolysate Concentrated with Molasses under Cell Recycle. Bioresour. Technol. 2013, 130, 351–359. [Google Scholar] [CrossRef]
- Rojas-Diaz, D.; Catano-Lopez, A.; Vélez, C.M.; Ortiz, S.; Laniado, H. Confidence Sub-Contour Box: An Alternative to Traditional Confidence Intervals. Comput. Stat. 2024, 39, 2821–2858. [Google Scholar] [CrossRef]
- Henrotin, A.; Hantson, A.-L.; Dewasme, L. Dynamic Modeling and Parameter Estimation of Biomethane Production from Microalgae Co-Digestion. Bioprocess Biosyst. Eng. 2023, 46, 129–146. [Google Scholar] [CrossRef]
Microorganisms, Culture Medium, and Culture Conditions | Modeling Features | Reference |
---|---|---|
Microorganism: Pantoea sp. Culture medium: peptone, Na2HPO4, Triton X-100, H3BO3, ZnCl2, FeCl3, supplemented with sugar beet molasses (SBM). Culture conditions: agitated batch culture; 30 °C temperature; 6.5 initial pH, and 200 rpm agitation. | Features of the model used for training: algebraic equation for biomass, product, and substrate concentrations. It is deduced based on a logistic model for biomass growth, the Luedeking–Piret model for the product, and the Luedeking–Piret model for the substrate. SGR model: the logistic model is used for biomass growth, so that the SGR is a linear function of the biomass concentration with a negative slope. Fitted variables: biomass, product, and substrate concentrations. Main limitations: the logistic model is used for biomass growth, which is overly simple. | [32] |
Microorganism: Gluconacetobacter xylinus. Culture medium: yeast extract, peptone, sodium phosphate dibasic, citric acid, and glycerol. Biodiesel-derived crude glycerol and puree glycerol are used as carbon sources. Culture conditions: static batch culture with magnetic functionalization of bacterial cellulose; 30 °C temperature; and 5.0 pH. | Features of the model used for training: algebraic specific production rate as a function of substrate concentration, using Haldane, Yano, and Aiba models. SGR model: --- Fitted variables: specific rate of bacterial cellulose production. Main limitations: the model used for training is the specific production rate, so concentrations of biomass and substrate are not modeled. | [1] |
Microorganism: Gluconacetobacter japonicus. Culture medium: commercial strawberry purée. Culture conditions: agitated batch culture; 29 °C temperature; and 3.5 initial pH. | Features of the model used for training: algebraic equation for total glucose; linear equation for gluconic acid as a function of glucose concentration. SGR model: constant. Fitted variables: substrate (glucose) concentration and gluconic acid concentration. Main limitations: the SGR model used is overly simple. | [30] |
Microorganism: K. xylinus. Culture medium: fructose, corn steep solid (CSS) solution, and (NH4)2SO4. Fructose is used as a carbon source. Culture conditions: stirred batch culture; 4.5 initial pH; and 30 °C temperature. | Features of the model used for training: Ordinary Differential Equations (ODE) with biomass, substrate, and product concentrations as state variables. SGR model: Monod, Haldane, third Edward’s functions, with and without biomass inhibition terms. Fitted variables: biomass, substrate, and product concentrations. Main limitations: dependence on pH and temperature is missing. | This study |
Model | RMSEx | RMSEs | R2x | R2s | AIC |
---|---|---|---|---|---|
M0a | 0.053761 | 0.051327 | 0.97792 | 0.98378 | −185.206 |
M0b | 0.061041 | 0.042049 | 0.97153 | 0.98911 | −188.3623 |
M0c | 0.061363 | 0.044923 | 0.97123 | 0.98758 | −183.6492 |
M0d | 0.064275 | 0.043261 | 0.96844 | 0.98848 | −179.1874 |
M0e | 0.060673 | 0.038143 | 0.97188 | 0.99104 | −187.6856 |
M1a | 0.058479 | 0.038479 | 0.97387 | 0.99088 | −189.2826 |
M1b | 0.055625 | 0.0411 | 0.97636 | 0.9896 | −186.9084 |
M1c | 0.05228 | 0.041629 | 0.97912 | 0.98933 | −192.4374 |
M2a | 0.050104 | 0.03359 | 0.98082 | 0.99305 | −192.7555 |
M2b | 0.072258 | 0.059127 | 0.96011 | 0.97848 | −163.0504 |
M2c | 0.049386 | 0.03195 | 0.98137 | 0.99372 | −197.9226 |
M3a | 0.048482 | 0.031961 | 0.98204 | 0.99371 | −195.3432 |
M3b | 0.057165 | 0.034364 | 0.97503 | 0.99273 | −189.3736 |
M4b | 0.055737 | 0.037616 | 0.97627 | 0.99129 | −181.6289 |
Model | Estimated Parameters and Confidence Intervals | RMSE | R2 |
---|---|---|---|
M2c | ; ; ; ; ; ; ; . | RMSEx = 0.049568; RMSEs = 0.031743; RMSEp = 0.074324. | R2x = 0.98123; R2s = 0.9938; R2p = 0.94627. |
M3a | ; ; ; ; ; ; | RMSEx = 0.048459; RMSEs = 0.032281; RMSEp = 0.074962; | R2x = 0.98206; R2s = 0.99358; R2p = 0.94534. |
M2a | ; ; ; ; ; ; | RMSEx = 0.049837; RMSEs = 0.033548; RMSEp = 0.074281. | R2x = 0.98102; R2s = 0.99307; R2p = 0.94633. |
Model | RMSEx | RMSEs | R2x | R2s | AIC |
---|---|---|---|---|---|
M0a | 0.044434 | 0.056655 | 0.98589 | 0.98189 | −187.3691 |
M0b | 0.052438 | 0.038735 | 0.98034 | 0.99154 | −197.0915 |
M0c | 0.052651 | 0.039572 | 0.98018 | 0.99117 | −193.4266 |
M0d | 0.052076 | 0.038253 | 0.98062 | 0.99174 | −191.5316 |
M0e | 0.052697 | 0.03796 | 0.98015 | 0.99187 | −194.3819 |
M1a | 0.12744 | 0.079194 | 0.88392 | 0.96462 | −137.4426 |
M1b | 0.04614 | 0.038197 | 0.98478 | 0.99177 | −196.6857 |
M1c | 0.046914 | 0.037597 | 0.98427 | 0.99203 | −199.6311 |
M2a | 0.046447 | 0.037757 | 0.98458 | 0.99196 | −193.2806 |
M2b | 0.06077 | 0.070234 | 0.9736 | 0.97217 | −163.4092 |
M2c | 0.05592 | 0.031866 | 0.97611 | 0.99375 | −191.7991 |
M3a | 0.04902 | 0.03774 | 0.98282 | 0.99196 | −191.0376 |
M3b | 0.055973 | 0.039585 | 0.97761 | 0.99116 | −187.5064 |
M4b | 0.049466 | 0.040792 | 0.98251 | 0.98251 | −184.8671 |
Model | Estimated Parameters | RMSE | R2 |
---|---|---|---|
M1c | ; ; ; ; ; . | RMSEx = 0.04766; RMSEs = 0.039016; RMSEp = 0.094667. | R2x = 0.984; R2s = 0.99097; R2p = 0.84697. |
M0b | ; ; ; ; . | RMSEx = 0.054207; RMSEs = 0.039804; RMSEp = 0.10556. | R2x = 0.9793; R2s = 0.9906; R2p = 0.7928. |
M1b | ; ; ; ; ; ; ; . | RMSEx = 0.04645; RMSEs = 0.039577; RMSEp = 0.10599. | R2x = 0.9848; R2s = 0.99071; R2p = 0.79111. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rincón, A.; Hoyos, F.E.; Candelo-Becerra, J.E. Dynamic Modeling of Bacterial Cellulose Production Using Combined Substrate- and Biomass-Dependent Kinetics. Computation 2024, 12, 239. https://doi.org/10.3390/computation12120239
Rincón A, Hoyos FE, Candelo-Becerra JE. Dynamic Modeling of Bacterial Cellulose Production Using Combined Substrate- and Biomass-Dependent Kinetics. Computation. 2024; 12(12):239. https://doi.org/10.3390/computation12120239
Chicago/Turabian StyleRincón, Alejandro, Fredy E. Hoyos, and John E. Candelo-Becerra. 2024. "Dynamic Modeling of Bacterial Cellulose Production Using Combined Substrate- and Biomass-Dependent Kinetics" Computation 12, no. 12: 239. https://doi.org/10.3390/computation12120239
APA StyleRincón, A., Hoyos, F. E., & Candelo-Becerra, J. E. (2024). Dynamic Modeling of Bacterial Cellulose Production Using Combined Substrate- and Biomass-Dependent Kinetics. Computation, 12(12), 239. https://doi.org/10.3390/computation12120239