Asymptotic and Probabilistic Perturbation Analysis of Controllable Subspaces
Abstract
1. Introduction
2. Asymptotic Perturbation Bounds for the Controllable Subspaces
2.1. Orthonormal Bases of the Controllable Subspaces
2.2. Perturbation Bounds by the Splitting Operator Method
3. Probabilistic Perturbation Bounds for Controllable Subspaces
3.1. Probabilistic Bounds for Random Matrices
3.2. Probabilistic Sensitivity Analysis of Controllable Subspaces
4. Discussion on the Results
5. A Numerical Example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notation
the set of real numbers | |
the space of real matrices | |
a matrix with entries | |
the jth column of A | |
the ith row of an matrix A | |
the part of matrix A from row to and from column to | |
the strictly lower triangular part of A | |
the matrix of absolute values of the entries of A | |
the transpose of A | |
the inverse of A | |
the zero matrix | |
the unit matrix | |
the perturbation of A | |
the ith singular value of A | |
the Frobenius norm of A | |
equal by definition | |
⪯ | relation of partial order. If then means |
the subspace spanned by the columns of X | |
the orthogonal complement of U, | |
the Kronecker product of A and B | |
the vec mapping of . If A is partitioned column-wise as , | |
then | |
the vec-permutation matrix. | |
the probability of the event | |
the average value or mean of the random variable | |
the number of the entries of A that are greater or equal to the corresponding entries of B |
References
- Wonham, W.M. Linear Multivariable Control. A Geometric Approach, 3rd ed.; Springer-Verlag: New York, NY, USA, 1985; ISBN 0-387-96071-6. [Google Scholar]
- Berger, T.; Reys, T. Controllability of linear differential-algebraic systems—A Survey. In Surveys in Differential-Algebraic Equations I. Differential-Algebraic Equations Forum; Ilchmann, A., Reis, T., Eds.; Springer: Berlin, Germany, 2013. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, J.; Li, X. New measure for network controllability robustness based on controllable subspace. In Proceedings of the 2024 IEEE International Symposium on Circuits and Systems (ISCAS), Singapore, 19–22 May 2024. [Google Scholar] [CrossRef]
- Maarouf, H. Controllable subspace for linear time varying systems. Eur. J. Control 2019, 50, 72–78. [Google Scholar] [CrossRef]
- Ming, Z.; Dai, H.-Y.; Gong, E.-L.; Xie, H.-W.; Hu, D.-W. Controllable subspaces of open quantum dynamical systems. Commun. Theor. Phys. 2008, 49, 61. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, Z. Minimum realization for controllability/observability of switched linear systems. Nonlinear Anal. Hybrid Syst. 2024, 51, 101426. [Google Scholar] [CrossRef]
- Boley, D.; Lu, W.-S. Measuring how far a controllable system is from an uncontrollable one. IEEE Trans. Automat. Control 1986, 31, 249–251. [Google Scholar] [CrossRef]
- Eising, R. Between controllable and uncontrollable. Syst. Control Lett. 1984, 4, 263–264. [Google Scholar] [CrossRef]
- Paige, C. Properties of numerical algorithms related to computing controllability. IEEE Trans. Automat. Control 1981, 26, 130–138. [Google Scholar] [CrossRef]
- Demmel, J.W. On Condition numbers and the distance to the nearest ill-posed problem. Numer.. Math. 1987, 51, 251–289. [Google Scholar] [CrossRef]
- Johnson, S.C.; Wicks, M.; Žefran, M.; DeCarlo, R.A. The structured distance to the nearest system without property . IEEE Trans. Automat. Control 2018, 63, 2960–2975. [Google Scholar] [CrossRef]
- Mengi, E. On the estimation of the distance to uncontrollability for higher order systems. SIAM J. Matrix Anal. Appl. 2008, 30, 154–172. [Google Scholar] [CrossRef]
- Wicks, M.; DeCarlo, R.A. Computing the distance to an uncontrollable system. IEEE Trans. Automat. Control 1991, 36, 39–49. [Google Scholar] [CrossRef]
- Yun, Z.; Chengwu, Y. Formulae for the distance between controllable and uncontrollable linear systems. Syst. Control Lett. 1993, 21, 173–180. [Google Scholar] [CrossRef]
- Konstantinov, M.; Petkov, P. Perturbation Methods in Matrix Analysis and Control; NOVA Science Publishers, Inc.: New York, NY, USA, 2020; Available online: https://novapublishers.com/shop/perturbation-methods-in-matrix-analysis-and-control (accessed on 24 November 2024).
- Petkov, P. Probabilistic perturbation bounds for invariant, deflating and singular subspaces. Axioms 2024, 13, 597. [Google Scholar] [CrossRef]
- The MathWorks, Inc. MATLAB Version 9.9.0.1538559 (R2020b). Natick, MA, 2020. Available online: http://www.mathworks.com (accessed on 24 November 2024).
- Stewart, G. Matrix Algorithms; Vol. II: Eigensystems; SIAM: Philadelphia, PA, USA, 2001; ISBN 0-89871-503-2. [Google Scholar]
- Stewart, G.W.; Sun, J.-G. Matrix Perturbation Theory; Academic Press: New York, NY, USA, 1990; ISBN 978-0126702309. [Google Scholar]
- Konstantinov, M.; Petkov, P.; Christov, N. Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups. Kybernetika 1981, 17, 413–424. [Google Scholar]
- Laub, A.J.; Linnemann, A. Hessenberg and Hessenberg/triangular forms in linear system theory. Int. J. Control 1986, 44, 1523–1547. [Google Scholar] [CrossRef]
- Dooren, P.M.V. The generalized eigenstructure problem in linear system theory. IEEE Trans. Automar. Contr. 1981, 26, 111–129. [Google Scholar] [CrossRef]
- Golub, G.H.; Van Loan, C.F. Matrix Computations, 4th ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 2013; ISBN 978-1-4214-0794-4. [Google Scholar]
- Konstantinov, M.; Petkov, P.; Gu, D.; Postlethwaite, I. Perturbation analysis of orthogonal canonical forms. Linear Algebra Appl. 1997, 251, 267–291. [Google Scholar] [CrossRef][Green Version]
- Petkov, P. Perturbation bounds for orthogonal canonical forms and numerical controllability analysis. IEEE Trans. Automat. Control 1993, 38, 639–643. [Google Scholar] [CrossRef]
- Edelman, A.; Rao, N.R. Random matrix theory. Acta Numer. 2005, 14, 1–65. [Google Scholar] [CrossRef]
- Stewart, G.W. Stochastic perturbation theory. SIAM Rev. 1990, 32, 579–610. [Google Scholar] [CrossRef]
- Papoulis, A. Probability, Random Variables and Stochastic Processes, 3rd ed.; McGraw Hill, Inc.: New York, NY, USA, 1991; ISBN 0-07-048477-5. [Google Scholar]
- Petkov, P. Probabilistic perturbation bounds of matrix decompositions. Numer. Linear Algebra Appl. 2024, 31, 1–40. [Google Scholar] [CrossRef]
- Bavely, C.A.; Stewart, G.W. An algorithm for computing reducing subspaces by block diagonalization. SIAM J. Numer. Anal. 1979, 16, 359–367. [Google Scholar] [CrossRef][Green Version]
% | % | ||
---|---|---|---|
% | % | ||
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelova, V.; Konstantinov, M.; Petkov, P. Asymptotic and Probabilistic Perturbation Analysis of Controllable Subspaces. Computation 2024, 12, 236. https://doi.org/10.3390/computation12120236
Angelova V, Konstantinov M, Petkov P. Asymptotic and Probabilistic Perturbation Analysis of Controllable Subspaces. Computation. 2024; 12(12):236. https://doi.org/10.3390/computation12120236
Chicago/Turabian StyleAngelova, Vera, Mihail Konstantinov, and Petko Petkov. 2024. "Asymptotic and Probabilistic Perturbation Analysis of Controllable Subspaces" Computation 12, no. 12: 236. https://doi.org/10.3390/computation12120236
APA StyleAngelova, V., Konstantinov, M., & Petkov, P. (2024). Asymptotic and Probabilistic Perturbation Analysis of Controllable Subspaces. Computation, 12(12), 236. https://doi.org/10.3390/computation12120236