Automated Cervical Cancer Screening Using Single-Cell Segmentation and Deep Learning: Enhanced Performance with Liquid-Based Cytology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Traditional Pap Smear and Liquid Cytology Image Acquisition
2.2. Cell Segmentation Algorithm
2.3. Malignant Cell Classification AI-Model Based in ResNet 50 Architecture
2.4. Statistical Analysis
2.4.1. Descriptive
2.4.2. Inferential
2.4.3. Diagnostic Performance Metrics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CC | cervical cancer |
ML | machine learning |
AI | artificial intelligence |
DL | deep learning |
CNN | convolutional neuronal network |
LMICs | low- and middle-income countries |
LBC | liquid-based cytology |
References
- World Health Organization. New WHO Recommendations on Screening and Treatment to Prevent Cervical Cancer Among Women Living with HIV; Wiley: Hoboken, NJ, USA, 2023.
- Bustos, M.C. Especialistas Alertan Que cáNcer de Cuello Uterino Sigue en el Top 10 Como Causa de Muerte en Chile. El Mostrador, Santiago, Chile. 2023. Available online: https://www.elmostrador.cl/agenda-pais/vida-en-linea/2023/09/22/especialistas-alertan-que-cancer-de-cuello-uterino-sigue-en-el-top-10-como-causa-de-muerte-en-chile/ (accessed on 2 September 2024).
- Bogdanova, A.; Andrawos, C.; Constantinou, C. Cervical Cancer, Geographical Inequalities, Prevention and Barriers in Resource Depleted Countries (Review). Oncol. Lett. 2022, 23, 113. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-M.; Lee, B.; Cho, N.-H.; Park, J.H. Beyond the Microscope: A Technological Overture for Cervical Cancer Detection. Diagnostics 2023, 13, 3079. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Rezende, L.F.M.; Murata, E.; Giannichi, B.; Tomita, L.Y.; Wagner, G.A.; Sanchez, Z.M.; Celis-Morales, C.; Ferrari, G. Cancer Cases and Deaths Attributable to Lifestyle Risk Factors in Chile. BMC Cancer 2020, 20, 693. [Google Scholar] [CrossRef] [PubMed]
- Saldivia, L.Z.; Silva, I.V.; Rojas, F.H.; Vidal, B.M. Distribución etaria e incidencia de lesiones preinvasoras y cáncer cérvico uterino, entre los años 2009–2019: Revisión de tres zonas geográficas de Chile. Rev. Conflu. 2022, 5, 56–59. [Google Scholar]
- Fowler, J.R.; Maani, E.V.; Dunton, C.J.; Gasalberti, D.P.; Jack, B.W.; Miller, J.L. Cervical Cancer. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Schiffman, M.; Castle, P.E.; Jeronimo, J.; Rodriguez, A.C.; Wacholder, S. Human Papillomavirus and Cervical Cancer. Lancet 2007, 370, 890–907. [Google Scholar] [CrossRef]
- Shepherd, L.J.; Bryson, S.C.P. Human Papillomavirus—Lessons From History and Challenges for the Future. J. Obstet. Gynaecol. Can. 2008, 30, 1025–1033. [Google Scholar] [CrossRef]
- Núñez-Troconis, J. Papel del virus del papiloma humano en el desarrollo del cáncer del cuello uterino. Investig. Clín. 2023, 64, 233–254. [Google Scholar] [CrossRef]
- Almonte, M.; Murillo, R.; Sánchez, G.I.; González, P.; Ferrera, A.; Picconi, M.A.; Wiesner, C.; Cruz-Valdez, A.; Lazcano-Ponce, E.; Jerónimo, J.; et al. Multicentric Study of Cervical Cancer Screening with Human Papillomavirus Testing and Assessment of Triage Methods in Latin America: The ESTAMPA Screening Study Protocol. BMJ Open 2020, 10, e035796. [Google Scholar] [CrossRef]
- Contreras, R. Papanicolaou y Citología Líquida En Diagnóstico de Cáncer de Cérvix: Hospital Civil de Maracay. 2012. Comunidad y Salud 2015, 13, 12–22. [Google Scholar]
- Herrera Conza, E.M.; Salazar Torres, Z.K.; Espinosa Martín, L.; Aspiazu Hinostroza, K.A. Detección Oportuna de Cáncer Cérvico-Uterino. Rev. Vive 2021, 3, 264–274. [Google Scholar] [CrossRef]
- Landy, R.; Pesola, F.; Castañón, A.; Sasieni, P. Impact of Cervical Screening on Cervical Cancer Mortality: Estimation Using Stage-Specific Results from a Nested Case-Control Study. Br. J. Cancer 2016, 115, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Bavikar, R.; Buch, A.; Kulkarni, M.; Dharwadkar, A.; Viswanathan, V. A Comparison of Conventional Pap Smear and Liquid-Based Cytology for Cervical Cancer Screening. Gynecol. Minim. Invasive Ther. 2023, 12, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.B.; Gupta, N.; Nijhawan, R.; Srinivasan, R.; Suri, V.; Rajwanshi, A. Liquid-Based Cytology versus Conventional Cytology for Evaluation of Cervical Pap Smears:Experience from the First 1000 Split Samples. Indian J. Pathol. Microbiol. 2015, 58, 17–21. [Google Scholar] [PubMed]
- Gupta, R.; Yadav, R.; Sharda, A.; Kumar, D.; Mehrotra, R.; Gupta, S. Comparative Evaluation of Conventional Cytology and a Low-Cost Liquid-Based Cytology Technique, EziPREPTM, for Cervicovaginal Smear Reporting: A Split Sample Study. Cytojournal 2019, 16, 12. [Google Scholar] [CrossRef]
- Alias, N.A.; Mustafa, W.A.; Jamlos, M.A.; Alquran, H.; Hanafi, H.F.; Ismail, S.; Rahman, K.S.A. Pap Smear Images Classification Using Machine Learning: A Literature Matrix. Diagnostics 2022, 12, 2900. [Google Scholar] [CrossRef]
- Zhao, L.; Li, K.; Wang, M.; Yin, J.; Zhu, E.; Wu, C.; Wang, S.; Zhu, C. Automatic cytoplasm and nuclei segmentation for color cervical smear image using an efficient gap-search MRF. Comput. Biol. Med. 2016, 71, 46–56. [Google Scholar] [CrossRef]
- Bhatt, A.R.; Ganatra, A.; Kotecha, K. Cervical cancer detection in pap smear whole slide images using convNet with transfer learning and progressive resizing. PeerJ Comput. Sci. 2021, 7, e348. [Google Scholar] [CrossRef]
- Hou, X.; Shen, G.; Zhou, L.; Li, Y.; Wang, T.; Ma, X. Artificial Intelligence in Cervical Cancer Screening and Diagnosis. Front. Oncol. 2022, 12, 851367. [Google Scholar] [CrossRef]
- Kalbhor, M.; Shinde, S.; Popescu, D.E.; Hemanth, D.J. Hybridization of Deep Learning Pre-Trained Models with Machine Learning Classifiers and Fuzzy Min–Max Neural Network for Cervical Cancer Diagnosis. Diagnostics 2023, 13, 1363. [Google Scholar] [CrossRef]
- Sompawong, N.; Mopan, J.; Pooprasert, P.; Himakhun, W.; Suwannarurk, K.; Ngamvirojcharoen, J.; Vachiramon, T.; Tantibundhit, C. Automated Pap Smear Cervical Cancer Screening Using Deep Learning. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 7044–7049. [Google Scholar]
- Hussain, E.; Mahanta, L.B.; Das, C.R.; Choudhury, M.; Chowdhury, M. A shape context fully convolutional neural network for segmentation and classification of cervical nuclei in Pap smear images. Artif. Intell. Med. 2020, 107, 101897. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, J.; Wen, Q.-M.; Zuo, Z.-Q.; Liu, J.-S.; Feng, J.; Pang, B.-C.; Xiao, D. CytoBrain: Cervical Cancer Screening System Based on Deep Learning Technology. J. Comput. Sci. Technol. 2021, 36, 347–360. [Google Scholar] [CrossRef]
- Yaman, O.; Tuncer, T. Exemplar pyramid deep feature extraction based cervical cancer image classification model using pap-smear images. Biomed. Signal Process. Control 2022, 73, 103428. [Google Scholar] [CrossRef]
- Rasheed, A.; Shirazi, S.H.; Umar, A.I.; Shahzad, M.; Yousaf, W.; Khan, Z. Cervical cell’s nucleus segmentation through an improved UNet architecture. PLoS ONE 2023, 18, e0283568. [Google Scholar] [CrossRef]
- Nazir, N.; Sarwar, A.; Saini, B.S.; Shams, R. A Robust Deep Learning Approach for Accurate Segmentation of Cytoplasm and Nucleus in Noisy Pap Smear Images. Computation 2023, 11, 195. [Google Scholar] [CrossRef]
- Shafi, S.; Parwani, A.V. Artificial Intelligence in Diagnostic Pathology. Diagn. Pathol. 2023, 18, 109. [Google Scholar] [CrossRef]
- Silva, H.E.C.D.; Santos, G.N.M.; Leite, A.F.; Mesquita, C.R.M.; Figueiredo, P.T.S.; Stefani, C.M.; Melo, N.S. The Use of Artificial Intelligence Tools in Cancer Detection Compared to the Traditional Diagnostic Imaging Methods: An Overview of the Systematic Reviews. PLoS ONE 2023, 18, e0292063. [Google Scholar] [CrossRef]
- Bao, H.; Sun, X.; Zhang, Y. The Artificial Intelligence-Assisted Cytology Diagnostic System in Large-Scale Cervical Cancer Screening: A Population-Based Cohort Study of 0.7 Million Women. Cancer Med. 2020, 9, 6896–6906. [Google Scholar] [CrossRef]
- Kresnauli, P.; Zipora, Y.C. The Application of Artificial Intelligence in Cervical Cancer Screening with Colposcopy Imaging Device; Preprint Posted Online March 2023. Available online: https://ssrn.com/abstract=4376594 (accessed on 2 September 2024).
- Razzak, M.A.; Islam, M.N.; Aadeeb, M.S.; Tasnim, T. Digital Health Interventions for Cervical Cancer Care: A Systematic Review and Future Research Opportunities. PLoS ONE 2023, 18, e0296015. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Shafiq, M.; Gu, Z. Deep Residual Learning for Image Recognition: A Survey. Appl. Sci. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Sachan, P.L.; Singh, M.; Patel, M.L.; Sachan, R. A Study on Cervical Cancer Screening Using Pap Smear Test and Clinical Correlation. Asia-Pac. J. Oncol. Nurs. 2018, 5, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Lozar, T.; Nagvekar, R.; Rohrer, C.; Dube Mandishora, R.S.; Ivanus, U.; Fitzpatrick, M.B. Cervical Cancer Screening Postpandemic: Self-Sampling Opportunities to Accelerate the Elimination of Cervical Cancer. Int. J. Womens Health 2021, 13, 841–859. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Norman, I.; Elfgren, K.; Gaberi, V.; Hagmar, B.; Hjerpe, A.; Andersson, S. A Comparison of Liquid-Based Cytology and Pap Smear as a Screening Method for Cervical Cancer. Oncol. Rep. 2007, 18, 157–160. [Google Scholar] [CrossRef]
- Sherman, M.E.; Mango, L.J.; Kelly, D.; Paull, G.; Ludin, V.; Copeland, C.; Schiffman, M.H. PAPNET Analysis of Reportedly Negative Smears Preceding the Diagnosis of a High-Grade Squamous Intraepithelial Lesion or Carcinoma. Mod. Pathol. 1994, 7, 578–581. [Google Scholar]
- Kanavati, F.; Hirose, N.; Ishii, T.; Fukuda, A.; Ichihara, S.; Tsuneki, M. A Deep Learning Model for Cervical Cancer Screening on Liquid-Based Cytology Specimens in Whole Slide Images. Cancers 2022, 14, 1159. [Google Scholar] [CrossRef]
- Stoler, M.H.; Schiffman, M. Interobserver Reproducibility of Cervical Cytologic and Histologic Interpretations: Realistic Estimates from the ASCUS-LSIL Triage Study. JAMA 2001, 285, 1500–1505. [Google Scholar] [CrossRef]
- Mustafa, W.A.; Ismail, S.; Mokhtar, F.S.; Alquran, H.; Al-Issa, Y. Cervical Cancer Detection Techniques: A Chronological Review. Diagnostics 2023, 13, 1763. [Google Scholar] [CrossRef]
- Dasgupta, S. The Efficiency of Cervical Pap and Comparison of Conventional Pap Smear and Liquid-Based Cytology. A Review. Cureus 2023, 15, e48343. [Google Scholar] [CrossRef]
- Mirbabaie, M.; Stieglitz, S.; Frick, N.R.J. Artificial Intelligence in Disease Diagnostics: A Critical Review and Classification on the Current State of Research Guiding Future Direction. Health Technol. 2021, 11, 693–731. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Albekairy, A.M. Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.K.; Singh, K.; Kumar, A.; Kolambakar, S.B. HDFCN: A Robust Hybrid Deep Network Based on Feature Concatenation for Cervical Cancer Diagnosis on WSI Pap Smear Slides. BioMed Res. Int. 2023, 2023, 4214817. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.; Ccopa, A.; Diaz, E.; Valcarcel, S.; Mauricio, D.; Villoslada, V. Deep Learning and Transfer Learning Methods to Effectively Diagnose Cervical Cancer from Liquid-Based Cytology Pap Smear Images. Int. J. Online Biomed. Eng. 2023, 19, 77–93. [Google Scholar] [CrossRef]
- Enciso Ortiz, S.E. Determinación de la mejor Arquitectura de Redes Neuronales Convolucionales: VGG16, ResNet50 ó MobileNet para detección de la Neumonía 2023. Rev. Investig. Fac. Cienc. Quím. Ing. Quím. Univ. Nac. Micaela Bastidas Apurímac 2024, 7, 18–26. [Google Scholar] [CrossRef]
- Frangi, A.; Prince, J.; Sonka, M. Medical Image Analysis; Academic Press: Cambridge, MA, USA, 2023; ISBN 9780128136584. [Google Scholar]
- Masoodi, F.; Quasim, M.; Bukhari, S.; Dixit, S.; Alam, S. Applications of Machine Learning and Deep Learning on Biological Data; CRC Press: Boca Raton, FL, USA, 2023; ISBN 9781000833768. [Google Scholar]
- Azad, R.; Aghdam, E.K.; Rauland, A.; Jia, Y.; Avval, A.H.; Bozorgpour, A.; Karimijafarbigloo, S.; Cohen, J.P.; Adeli, E.; Merhof, D. Medical Image Segmentation Review: The Success of U-Net. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 10076–10095. [Google Scholar] [CrossRef]
- Alvarado-Álvarez, A.M.; Salvador-Fernández, C.L.; Berruz-Alvarado, S.J.; Cañar-Lascano, G.G. Diagnóstico de cáncer cervicouterino: Comparación de la técnica de citología convencional y de base liquida. RCS 2023, 6, 18–33. [Google Scholar]
- Zou, J.; Xue, Z.; Brown, G.; Long, R.; Antani, S. Deep Learning for Nuclei Segmentation and Cell Classification in Cervical Liquid Based Cytology. In Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications; SPIE: Bellingham, WA, USA, 2020; Volume 11318, pp. 268–278. [Google Scholar]
- Mosiichuk, V.; Viana, P.; Oliveira, T.; Rosado, L. Automated Adequacy Assessment of Cervical Cytology Samples Using Deep Learning. In Pattern Recognition and Image Analysis; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 156–170. [Google Scholar]
- Yu, K.; Hyun, N.; Fetterman, B.; Lorey, T.; Raine-Bennett, T.R.; Zhang, H.; Stamps, R.E.; Poitras, N.E.; Wheeler, W.; Befano, B.; et al. Automated Cervical Screening and Triage, Based on HPV Testing and Computer-Interpreted Cytology. J. Natl. Cancer Inst. 2018, 110, djy044. [Google Scholar] [CrossRef]
- Xue, P.; Xu, H.M.; Tang, H.P.; Wu, W.Q.; Seery, S.; Han, X.; Ye, H.; Jiang, Y.; Qiao, Y.L. Assessing artificial intelligence enabled liquid-based cytology for triaging HPV-positive women: A population-based cross-sectional study. Acta Obstet. Gynecol. Scand. 2023, 102, 1026. [Google Scholar] [CrossRef]
- Yang, W.; Jin, X.; Huang, L.; Jiang, S.; Xu, J.; Fu, Y.; Song, Y.; Wang, X.; Wang, X.; Yang, Z.; et al. Clinical evaluation of an artificial intelligence-assisted cytological system among screening strategies for a cervical cancer high-risk population. BMC Cancer 2024, 24, 37. [Google Scholar] [CrossRef]
- Fu, L.; Xia, W.; Shi, W.; Cao, G.X.; Ruan, Y.T.; Zhao, X.Y.; Liu, M.; Niu, S.M.; Li, F.; Gao, X. Deep learning based cervical screening by the cross-modal integration of colposcopy, cytology, and HPV test. Int. J. Med. Inform. 2022, 159, 104675. [Google Scholar] [CrossRef]
- Mitra, S.; Das, N.; Dey, S.; Chakraborty, S.; Nasipuri, M.; Naskar, M.K. Cytology Image Analysis Techniques toward Automation. ACM Comput. Surv. 2022, 54, 1–41. [Google Scholar] [CrossRef]
- McManus, D.T. Miscellaneous Specimens and Ancillary Techniques. In Histopathology Specimens; Springer International Publishing: Cham, Switzerland, 2017; pp. 519–531. ISBN 9783319573595. [Google Scholar]
- Alsalatie, M.; Alquran, H.; Mustafa, W.A.; Yacob, Y.M.; Alayed, A.A. Analysis of Cytology Pap Smear Images Based on Ensemble Deep Learning Approach. Diagnostics 2022, 12, 2756. [Google Scholar] [CrossRef] [PubMed]
- Alsubai, S.; Alqahtani, A.; Sha, M.; Almadhor, A.; Abbas, S.; Mughal, H.; Gregus, M. Privacy Preserved Cervical Cancer Detection Using Convolutional Neural Networks Applied to Pap Smear Images. Comput. Math. Methods Med. 2023, 2023, 9676206. [Google Scholar] [CrossRef] [PubMed]
- Chowdary, G.J.; S, G.; P, M.; Yogarajah, P. Nucleus segmentation and classification using residual SE-UNet and feature concatenation approach in cervical cytopathology cell images. Technol. Cancer Res. Treat. 2023, 22, 15330338221134832. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Zhang, W.; Dong, Y.; Lin, R.; Geng, Y.; Hong, L. Automated cervical cell segmentation using deep ensemble learning. BMC Med. Imaging 2023, 23, 137. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, H.; Wang, X.; Grzegorzek, M.; Li, J.; Sun, H.; Ma, Y.; Zhang, X.; Zhang, Z.; Dekker, A.; et al. A multi-Task Learning based applicable AI model simultaneously predicts stage, histology, grade and LNM for cervical cancer before surgery. BMC Womens Health 2024, 24, 1–8. [Google Scholar]
- Kamakshi, V.; Krishnan, N.C. Explainable Image Classification: The Journey So Far and the Road Ahead. AI 2023, 4, 620–651. [Google Scholar] [CrossRef]
- Civit-Masot, J.; Luna-Perejon, F.; Muñoz-Saavedra, L.; Domínguez-Morales, M.; Civit, A. A lightweight xAI approach to cervical cancer classification. Med. Biol. Eng. Comput. 2024, 62, 2281–2304. [Google Scholar] [CrossRef]
- AlMohimeed, A.; Saleh, H.; Mostafa, S.; Saad, R.M.A.; Talaat, A.S. Cervical Cancer Diagnosis Using Stacked Ensemble Model and Optimized Feature Selection: An Explainable Artificial Intelligence Approach. Computers 2023, 12, 200. [Google Scholar] [CrossRef]
- Hasan, M.; Roy, P.; Nitu, A.M. Cervical Cancer Classification using Machine Learning with Feature Importance and Model Explainability. In Proceedings of the 4th International Conference on Electrical, Computer and Telecommunication Engineering, ICECTE 2022, Rajshahi, Bangladesh, 29–31 December 2022. [Google Scholar]
- Shakil, R.; Islam, S.; Akter, B. A precise machine learning model: Detecting cervical cancer using feature selection and explainable AI. J. Pathol. Inform. 2024, 15, 100398. [Google Scholar] [CrossRef]
Metrics | ResNet50-PAP |
---|---|
Accuracy | 0.7352 |
Sensitivity | 0.6887 |
Precision | 0.6293 |
Specificity | 0.7624 |
F-Score | 0.6577 |
Metrics | ResNet50-LCyt | R-CNN LCyt Sompawong et al. [24] | VGG-LCyt Chen et al. [26] |
---|---|---|---|
Accuracy | 0.980 | NR | NR |
Sensitivity | 0.981 | 0.917 | 0.928 |
Precision | 0.981 | 0.917 | 0.822 |
Specificity | 0.979 | 0.917 | 0.911 |
F1-Score | 0.981 | NR | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, M.; Córdova, C.; Benjumeda, I.; San Martín, S. Automated Cervical Cancer Screening Using Single-Cell Segmentation and Deep Learning: Enhanced Performance with Liquid-Based Cytology. Computation 2024, 12, 232. https://doi.org/10.3390/computation12120232
Rodríguez M, Córdova C, Benjumeda I, San Martín S. Automated Cervical Cancer Screening Using Single-Cell Segmentation and Deep Learning: Enhanced Performance with Liquid-Based Cytology. Computation. 2024; 12(12):232. https://doi.org/10.3390/computation12120232
Chicago/Turabian StyleRodríguez, Mariangel, Claudio Córdova, Isabel Benjumeda, and Sebastián San Martín. 2024. "Automated Cervical Cancer Screening Using Single-Cell Segmentation and Deep Learning: Enhanced Performance with Liquid-Based Cytology" Computation 12, no. 12: 232. https://doi.org/10.3390/computation12120232
APA StyleRodríguez, M., Córdova, C., Benjumeda, I., & San Martín, S. (2024). Automated Cervical Cancer Screening Using Single-Cell Segmentation and Deep Learning: Enhanced Performance with Liquid-Based Cytology. Computation, 12(12), 232. https://doi.org/10.3390/computation12120232