An Image Encryption Scheme Combining 2D Cascaded Logistic Map and Permutation-Substitution Operations
Abstract
:1. Introduction
- Proposing a combination of 2D-LASM, 2D-LICM, and 2D-LSCM to improve image encryption security based on various assessments.
- Proposing a combination of substitution and permutation techniques based on chaotic sequences at the bit and pixel levels in six stages to improve confusion and diffusion quality.
- Using a hash function on the private key to produce greater key space before using it to generate a chaotic sequence.
2. Related Work
3. Proposed Approach
- Read the user key and plain image as input for the SHA-512 hash function, and the output is 64 characters each, i.e., and .
- Generate initial value ( for 2D-LSCM, ( for 2D-LASM, and ( for 2D-LICM. To generate these, use Equations (1)–(6).
- Generate chaotic sequence-based 2D-LSCM using Equation (7).
- Generate chaotic sequence-based 2D-LASM using Equation (8).
- Generate chaotic sequence-based 2D-LICM using Equation (9).
- Each 2D-LSCM, 2D-LASM, and 2D-LICM has two sequences. Sort the first sequence of 2D-LSCM. Based on the sorting index, perform pixel permutation to perform first-stage encryption.
- In the second stage of encryption, first transform the second sequence 2D-LSCM with Equation (10). Next, perform bitXOR substitution between the encrypted first stage image and the transformed second sequence of 2D-LSCM.
- In the third stage, encryption is conducted using bit-level permutation, so the encrypted second-stage image () needs to be converted to binary form. At this stage, sort the first 2D-LASM sequence. Then, perform permutation based on the sorting index.
- The image, which is still in binary form, is restored to decimal form () to perform pixel substitution in the fourth stage. At this stage, the second sequence of 2D-LASM must be converted with Equation (11), then carry out the modulus operation with Equation (12).
- The bit-level permutation is performed in the fifth stage based on the first 2D-LICM sequence. Then, the image is converted back into binary form, then sorting the first 2D-LICM sequence. Then, perform a permutation based on the first 2D-LICM index sorting sequence in the encrypted fourth-stage image ().
- Restore the encrypted fifth stage image to decimal form, then convert the second sequence from 2D-LICM with Equation (13). Then, perform the bitXOR operation on the encrypted fifth stage image () with the second sequence from 2D-LICM to obtain the final encrypted image (), see Equation (14).
4. Results and Discussion
4.1. Histogram and Chi-Square () Test
4.2. Correlation Coefficient of Adjacent Pixel Test
4.3. Information Entropy Test
4.4. Key Sensitivity Test
4.5. Differential Test
4.6. NIST Randomness Test
4.7. TestU01
4.8. Data Loss and Noise Attack Test
4.9. Key Space Analysis
4.10. Ablation Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghadirli, H.M.; Nodehi, A.; Enayatifar, R. An Overview of Encryption Algorithms in Color Images. Signal Process. 2019, 164, 163–185. [Google Scholar] [CrossRef]
- Setiadi, D.R.I.M.; Rustad, S.; Andono, P.N.; Shidik, G.F. Digital Image Steganography Survey and Investigation (Goal, Assessment, Method, Development, and Dataset). Signal Process. 2023, 206, 108908. [Google Scholar] [CrossRef]
- Santos, D.F.; Espitia, H.E. Secure Medical Image Transmission Scheme Using Lorenz’s Attractor Applied in Computer Aided Diagnosis for the Detection of Eye Melanoma. Computation 2022, 10, 158. [Google Scholar] [CrossRef]
- Setiadi, D.R.I.M.; Rachmawanto, E.H.; Zulfiningrum, R. Medical Image Cryptosystem Using Dynamic Josephus Sequence and Chaotic-Hash Scrambling. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 6818–6828. [Google Scholar] [CrossRef]
- Alnajim, A.M.; Abou-Bakr, E.; Alruwisan, S.S.; Khan, S.; Elmanfaloty, R.A. Hybrid Chaotic-Based PRNG for Secure Cryptography Applications. Appl. Sci. 2023, 13, 7768. [Google Scholar] [CrossRef]
- Andono, P.N.; Setiadi, D.R.I.M. Improved Pixel and Bit Confusion-Diffusion Based on Mixed Chaos and Hash Operation for Image Encryption. IEEE Access 2022, 10, 115143–115156. [Google Scholar] [CrossRef]
- Winarno, E.; Nugroho, K.; Adi, P.W.; Setiadi, D.R.I.M. Combined Interleaved Pattern to Improve Confusion-Diffusion Image Encryption Based on Hyperchaotic System. IEEE Access 2023, 11, 69005–69021. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, D.; Sun, K.; Rawat, U. Color Image Encryption Using Non-Dominated Sorting Genetic Algorithm with Local Chaotic Search Based 5D Chaotic Map. Future Gener. Comput. Syst. 2020, 107, 333–350. [Google Scholar] [CrossRef]
- Alexan, W.; Chen, Y.-L.; Por, L.Y.; Gabr, M. Hyperchaotic Maps and the Single Neuron Model: A Novel Framework for Chaos-Based Image Encryption. Symmetry 2023, 15, 1081. [Google Scholar] [CrossRef]
- Alexan, W.; Alexan, N.; Gabr, M. Multiple-Layer Image Encryption Utilizing Fractional-Order Chen Hyperchaotic Map and Cryptographically Secure PRNGs. Fractal Fract. 2023, 7, 287. [Google Scholar] [CrossRef]
- Jun, W.J.; Fun, T.S. A New Image Encryption Algorithm Based on Single S-Box and Dynamic Encryption Step. IEEE Access 2021, 9, 120596–120612. [Google Scholar] [CrossRef]
- Ramzan, M.; Shah, T.; Hazzazi, M.M.; Aljaedi, A.; Alharbi, A.R. Construction of S-Boxes Using Different Maps over Elliptic Curves for Image Encryption. IEEE Access 2021, 9, 157106–157123. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Song, Z.; Wang, S. Quantum Image Encryption Based on Quantum DNA Codec and Pixel-Level Scrambling. Entropy 2023, 25, 865. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.; Zhu, C.; Latif, R.; Asim, M.; Tariq, M.U. Image Encryption Scheme Based on Orbital Shift Pixels Shuffling with ILM Chaotic System. Entropy 2023, 25, 787. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-W.; Zhou, N.-R. Image Encryption Scheme Based on Discrete Cosine Stockwell Transform and DNA-Level Modulus Diffusion. Opt. Laser Technol. 2022, 149, 107879. [Google Scholar] [CrossRef]
- Bufalo, M.; Bufalo, D.; Orlando, G. Some Properties of the Computation of the Modular Inverse with Applications in Cryptography. Computation 2023, 11, 70. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, S.; Zhang, L. Block Image Encryption Algorithm Based on Novel Chaos and DNA Encoding. Information 2023, 14, 150. [Google Scholar] [CrossRef]
- Moya-Albor, E.; Romero-Arellano, A.; Brieva, J.; Gomez-Coronel, S.L. Color Image Encryption Algorithm Based on a Chaotic Model Using the Modular Discrete Derivative and Langton’s Ant. Mathematics 2023, 11, 2396. [Google Scholar] [CrossRef]
- Abu-Faraj, M.; Al-Hyari, A.; Obimbo, C.; Aldebei, K.; Altaharwa, I.; Alqadi, Z.; Almanaseer, O. Protecting Digital Images Using Keys Enhanced by 2D Chaotic Logistic Maps. Cryptography 2023, 7, 20. [Google Scholar] [CrossRef]
- Choi, U.S.; Cho, S.J.; Kim, J.G.; Kang, S.W.; Kim, H.D. Color Image Encryption Based on Programmable Complemented Maximum Length Cellular Automata and Generalized 3-D Chaotic Cat Map. Multimed. Tools Appl. 2020, 79, 22825–22842. [Google Scholar] [CrossRef]
- Vaidyanathan, S.; Kammogne, A.S.T.; Tlelo-Cuautle, E.; Talonang, C.N.; Abd-El-Atty, B.; Abd El-Latif, A.A.; Kengne, E.M.; Mawamba, V.F.; Sambas, A.; Darwin, P.; et al. A Novel 3-D Jerk System, Its Bifurcation Analysis, Electronic Circuit Design and a Cryptographic Application. Electronics 2023, 12, 2818. [Google Scholar] [CrossRef]
- Ma, Y.; Li, C.; Ou, B. Cryptanalysis of an Image Block Encryption Algorithm Based on Chaotic Maps. J. Inf. Secur. Appl. 2020, 54, 102566. [Google Scholar] [CrossRef]
- Mfungo, D.E.; Fu, X.; Xian, Y.; Wang, X. A Novel Image Encryption Scheme Using Chaotic Maps and Fuzzy Numbers for Secure Transmission of Information. Appl. Sci. 2023, 13, 7113. [Google Scholar] [CrossRef]
- Ciylan, F.; Ciylan, B.; Atak, M. FPGA-Based Chaotic Image Encryption Using Systolic Arrays. Electronics 2023, 12, 2729. [Google Scholar] [CrossRef]
- Lai, Q.; Yang, L.; Liu, Y. Design and Realization of Discrete Memristive Hyperchaotic Map with Application in Image Encryption. Chaos Solitons Fractals 2022, 165, 112781. [Google Scholar] [CrossRef]
- Lai, Q.; Wan, Z.; Zhang, H.; Chen, G. Design and Analysis of Multiscroll Memristive Hopfield Neural Network with Adjustable Memductance and Application to Image Encryption. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–14. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y. Image Encryption Using 2D Logistic-Adjusted-Sine Map. Inf. Sci. 2016, 339, 237–253. [Google Scholar] [CrossRef]
- Demirtaş, M. A New RGB Color Image Encryption Scheme Based on Cross-Channel Pixel and Bit Scrambling Using Chaos. Optik 2022, 265, 169430. [Google Scholar] [CrossRef]
- Cao, C.; Sun, K.; Liu, W. A Novel Bit-Level Image Encryption Algorithm Based on 2D-LICM Hyperchaotic Map. Signal Process. 2018, 143, 122–133. [Google Scholar] [CrossRef]
- Xu, L.; Li, Z.; Li, J.; Hua, W. A Novel Bit-Level Image Encryption Algorithm Based on Chaotic Maps. Opt. Lasers Eng. 2016, 78, 17–25. [Google Scholar] [CrossRef]
- Hasheminejad, A.; Rostami, M.J. A Novel Bit Level Multiphase Algorithm for Image Encryption Based on PWLCM Chaotic Map. Optik 2019, 184, 205–213. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, X.; Wang, M.; Li, D. A New Combination Chaotic System and Its Application in a New Bit-Level Image Encryption Scheme. Opt. Lasers Eng. 2022, 149, 106782. [Google Scholar] [CrossRef]
- Teng, L.; Wang, X.; Meng, J. A Chaotic Color Image Encryption Using Integrated Bit-Level Permutation. Multimed. Tools Appl. 2018, 77, 6883–6896. [Google Scholar] [CrossRef]
- Patro, K.A.K.; Acharya, B. Secure Multi–Level Permutation Operation Based Multiple Colour Image Encryption. J. Inf. Secur. Appl. 2018, 40, 111–133. [Google Scholar] [CrossRef]
- Wang, X.; Du, X. Pixel-Level and Bit-Level Image Encryption Method Based on Logistic-Chebyshev Dynamic Coupled Map Lattices. Chaos Solitons Fractals 2022, 155, 111629. [Google Scholar] [CrossRef]
- Shahna, K.U.; Mohamed, A. A Novel Image Encryption Scheme Using Both Pixel Level and Bit Level Permutation with Chaotic Map. Appl. Soft Comput. J. 2020, 90, 106162. [Google Scholar] [CrossRef]
- L’Ecuyer, P.; Simard, R. TestU01. ACM Trans. Math. Softw. 2007, 33, 1–40. [Google Scholar] [CrossRef]
- Trujillo-Toledo, D.A.; López-Bonilla, O.R.; García-Guerrero, E.E.; Esqueda-Elizondo, J.J.; Cárdenas-Valdez, J.R.; Tamayo-Pérez, U.J.; Aguirre-Castro, O.A.; Inzunza-González, E. Real-Time Medical Image Encryption for H-IoT Applications Using Improved Sequences from Chaotic Maps. Integration 2023, 90, 131–145. [Google Scholar] [CrossRef]
- De la Fraga, L.G.; Ovilla-Martínez, B. A Chaotic PRNG Tested with the Heuristic Differential Evolution. Integration 2023, 90, 22–26. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Wu, Y.; Qi, Y.; Ren, F.; Li, S. A High Speed Pseudo-Random Bit Generator Driven by 2D-Discrete Hyperchaos. Chaos Solitons Fractals 2023, 167, 113039. [Google Scholar] [CrossRef]
- Wu, J.; Liao, X.; Yang, B. Color Image Encryption Based on Chaotic Systems and Elliptic Curve ElGamal Scheme. Signal Process. 2017, 141, 109–124. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J. A Multidimensional Chaotic Image Encryption Algorithm Based on DNA Coding. Multimed. Tools Appl. 2020, 79, 21579–21601. [Google Scholar] [CrossRef]
Image | Chi-Square (Mean) | Passed? |
---|---|---|
1013.pgm | 275.9563 | pass |
Lena grayscale | 212.6831 | pass |
Baboon grayscale | 284.3348 | pass |
Airplane grayscale | 285.0325 | pass |
Peppers grayscale | 259.1784 | pass |
Lena color | 209.9740 | pass |
Baboon color | 226.6225 | pass |
Airplane color | 251.3143 | pass |
Peppers color | 289.0926 | pass |
Average | 254.9098 | pass |
Image | Horizontal | Vertical | Diagonal |
---|---|---|---|
1013.pgm | 0.0013 | 0.0018 | −0.0003 |
Lena grayscale | −0.0011 | 0.0005 | 0.0007 |
Baboon grayscale | 0.0016 | 0.0019 | 0.0017 |
Airplane grayscale | −0.0015 | −0.0014 | 0.0012 |
Peppers grayscale | 0.0017 | 0.0019 | 0.0018 |
Lena color | 0.0005 | 0.0018 | 0.0006 |
Baboon color | −0.0016 | −0.0001 | −0.0019 |
Airplane color | −0.0009 | 0.0012 | 0.0014 |
Peppers color | 0.0002 | −0.0014 | 0.0017 |
Method | Horizontal | Vertical | Diagonal |
---|---|---|---|
Ref. [27] | 0.0013 | 0.0006 | 0.0019 |
Ref. [29] | 0.0019 | 0.0012 | 0.0009 |
Ref. [32] | 0.0005 | −0.0025 | 0.0028 |
Ref. [35] | 0.0035 | −0.0011 | −0.0028 |
Ref. [36] | −0.0016 | 0.0003 | −0.0022 |
Proposed | −0.0011 | 0.0005 | 0.0007 |
Image | Information Entropy |
---|---|
1013.pgm | 7.9994 |
Lena grayscale | 7.9994 |
Baboon grayscale | 7.9993 |
Airplane grayscale | 7.9993 |
Peppers grayscale | 7.9994 |
Lena color | 7.9993 |
Baboon color | 7.9994 |
Airplane color | 7.9993 |
Peppers color | 7.9993 |
Average | 7.9993 |
Image | NPCR | UACI |
---|---|---|
1013.pgm | 99.6112 | 33.4610 |
Lena grayscale | 99.6091 | 33.4598 |
Baboon grayscale | 99.6161 | 33.4693 |
Airplane grayscale | 99.5987 | 33.4582 |
Peppers grayscale | 99.6063 | 33.4626 |
Lena color | 99.6052 | 33.4561 |
Baboon color | 99.6125 | 33.4655 |
Airplane color | 99.6131 | 33.4567 |
Peppers color | 99.6086 | 33.4612 |
Average | 99.6090 | 33.4611 |
Method | NPCR | UACI |
---|---|---|
Ideal value | 99.6094 | 33.4635 |
Ref. [29] | 99.6096 | 33.4574 |
Ref. [32] | 99.6000 | 33.4800 |
Ref. [36] | 99.6058 | 33.4421 |
Proposed | 99.6091 | 33.4598 |
Test Name | p-Value | Note |
---|---|---|
Frequency | 0.638289477 | Passed |
Block Frequency | 0.785995714 | Passed |
Cumulative Sums (Forward) | 0.838654538 | Passed |
Cumulative Sums (Reverse) | 0.521356511 | Passed |
Runs | 0.206741782 | Passed |
Longest Run of Ones | 0.214957335 | Passed |
Rank | 0.298282198 | Passed |
Discrete Fourier Transform | 0.747352546 | Passed |
Nonperiodic Template Matchings | 0.295798124 | Passed |
Overlapping Template Matchings | 0.726999602 | Passed |
Universal Statistical | 0.287515082 | Passed |
Approximate Entropy | 0.815533161 | Passed |
Random Excursions | 0.36948825 | Passed |
Random Excursions Variant | 0.251379246 | Passed |
Serial | 0.29333542 | Passed |
Linear Complexity | 0.574354885 | Passed |
Average | 0.491627117 | Passed |
Chaotic Sequence | Test Name | Note | |
---|---|---|---|
Rabbit | Alphabit | ||
2D-LASM | 39/39 | 17/17 | All test passed |
2D-LSCM | 39/39 | 17/17 | All test passed |
2D-LICM | 39/39 | 17/17 | All test passed |
Method | Key Space | Note |
---|---|---|
SHA-512 | - | |
2D-LASM | Parameter and initial value | |
2D-LSCM | Parameter and initial value | |
2D-LICM | Parameter and initial value | |
Total |
Method | Avg IE | CC ‘Lena’ | Avg NPCR | Avg UACI | Time Taken (s) | |
---|---|---|---|---|---|---|
Without 2D-LASM | 0.0018 | |||||
285.4343 | 7.9990 | −0.0010 | 99.5013 | 33.3942 | 1.253434 | |
0.0012 | ||||||
Without 2D-LSCM | 0.0009 | |||||
274.7353 | 7.9991 | 0.0012 | 99.45898 | 33.2167 | 1.214575 | |
−0.0021 | ||||||
Without 2D-LICM | −0.0025 | |||||
270.2336 | 7.9973 | 0.0016 | 99.3849 | 32.9148 | 1.110195 | |
0.0006 | ||||||
Proposed | −0.0011 | |||||
254.9098 | 7.9993 | 0.0005 | 99.6090 | 33.4611 | 1.584455 | |
0.0007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setiadi, D.R.I.M.; Rijati, N. An Image Encryption Scheme Combining 2D Cascaded Logistic Map and Permutation-Substitution Operations. Computation 2023, 11, 178. https://doi.org/10.3390/computation11090178
Setiadi DRIM, Rijati N. An Image Encryption Scheme Combining 2D Cascaded Logistic Map and Permutation-Substitution Operations. Computation. 2023; 11(9):178. https://doi.org/10.3390/computation11090178
Chicago/Turabian StyleSetiadi, De Rosal Ignatius Moses, and Nova Rijati. 2023. "An Image Encryption Scheme Combining 2D Cascaded Logistic Map and Permutation-Substitution Operations" Computation 11, no. 9: 178. https://doi.org/10.3390/computation11090178
APA StyleSetiadi, D. R. I. M., & Rijati, N. (2023). An Image Encryption Scheme Combining 2D Cascaded Logistic Map and Permutation-Substitution Operations. Computation, 11(9), 178. https://doi.org/10.3390/computation11090178