Intelligent Monitoring System to Assess Plant Development State Based on Computer Vision in Viticulture
Abstract
:1. Introduction
- -
- Develop architecture, algorithms, and an original software and hardware complex based on the computer vision system for detecting and predicting the development of grape diseases.
- -
- Create a web service and a mobile application for the provision of an intelligent grape disease recognition system service for agricultural enterprises and winegrowers in southern Russia.
2. Materials and Methods
2.1. Diseases of Grapes Typical of the Black Sea Region
2.2. Comparison of the Characteristics of Neural Networks of Different Architectures Using Computer Vision
3. Results
3.1. Development of a Technique for Preparing and Marking an Image for Training Neural Networks
3.2. Development of the Interface and Program Module of the System
4. Discussion
5. Conclusions
- -
- Saving time. A fully automated system not only works much faster, but can also work 24/7 if required.
- -
- Accuracy. Computer-vision-based decision making allows manufacturing companies to achieve higher levels of accuracy within acceptable tolerances. The combination of special equipment and advanced machine vision algorithms achieves a near-perfect level of precision in production and quality control.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mavridou, E.; Vrochidou, E.; Papakostas, G.A.; Pachidis, T.; Kaburlasos, V.G. Machine Vision Systems in Precision Agriculture for Crop Farming. J. Imaging 2019, 5, 89. [Google Scholar] [CrossRef]
- Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. Inf. Process. Agric. 2020, 7, 1–19. [Google Scholar] [CrossRef]
- Rodríguez-Pulido, F.J.; Gómez-Robledo, L.; Melgosa, M.; Gordillo, B.; González-Miret, M.L.; Heredia, F.J. Ripeness estimation of grape berries and seeds by image analysis. Comput. Electron. Agric. 2012, 82, 128–133. [Google Scholar] [CrossRef]
- Barbole, M.D.; Jadhav, D.P. Comparative Analysis of Deep Learning Architectures for Grape Cluster Instance Segmentation. Inf. Technol. Ind. 2021, 9, 344–352. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Zhang, C.; Ding, H.; Shi, Q.; Wang, Y. Grape Cluster Real-Time Detection in Complex Natural Scenes Based on YOLOv5s Deep Learning Network. Agriculture 2022, 12, 1242. [Google Scholar] [CrossRef]
- Zeng, M.; Gao, H.; Wan, L. Few-Shot Grape Leaf Diseases Classification Based on Generative Adversarial Network. J. Phys. Conf. Ser. 2021, 1883, 012093. [Google Scholar] [CrossRef]
- Arnó, J.; Casasnovas, M.; Ribes-Dasi, M.; Rosell, J. Review. Precision Viticulture. Research topics, challenges and opportunities in site-specific vineyard management. Span. J. Agric. Res. 2009, 7, 779–790. [Google Scholar] [CrossRef]
- Ireri, D.; Belal, E.; Okinda, C.; Makange, N.; Ji, C.Y. A computer vision system for defect discrimination and grading in tomatoes using machine learning and image processing. Artif. Intell. Agric. 2019, 2, 28–37. [Google Scholar] [CrossRef]
- Fina, F.; Birch, P.; Young, R.; Obu, J.; Faithpraise, B.; Chatwin, C. Automatic plant pest detection and recognition using k-means clustering algorithm and correspondence filters. Int. J. Adv. Biotechnol. Res. 2013, 4, 189–199. [Google Scholar]
- Li, L.; Zhang, S.; Wang, B. Plant disease detection and classification by deep learning—A review. IEEE Access 2021, 9, 56683–56698. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Z.; Zhou, S.; Xing, J.; Wu, Q.; Song, J. Grape leaf spot identification under limited samples by fine grained-GAN. IEEE Access 2021, 9, 100480–100489. [Google Scholar] [CrossRef]
- Huang, Z.; Qin, A.; Lu, J.; Menon, A.; Gao, J. Grape Leaf Disease Detection and Classification Using Machine Learning. In Proceedings of the 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), Rhodes Island, Greece, 2–6 November 2020; pp. 870–877. [Google Scholar]
- Thet, K.Z.; Htwe, K.K.; Thein, M.M. Grape leaf diseases classification using convolutional neural network. In Proceedings of the 2020 International Conference on Advanced Information Technologies (ICAIT), Yangon, Myanmar, 4–5 November 2020; pp. 147–152. [Google Scholar]
- Ji, M.; Zhang, L.; Wu, Q. Automatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networks. Inf. Process. Agric. 2020, 7, 418–426. [Google Scholar] [CrossRef]
- Rong, D.; Ying, Y.B.; Rao, X.Q. Embedded vision detection of defective orange by fast adaptive lightness correction algorithm. Comput. Electron. Agric. 2017, 138, 48–59. [Google Scholar] [CrossRef]
- Fan, S.X.; Li, J.B.; Zhang, Y.H.; Tian, X.; Wang, Q.Y.; He, X.; Zhang, C.; Huang, W.Q. On line detection of defective apples using computer vision system combined with deep learning methods. J. Food Eng. 2020, 286, 110102. [Google Scholar] [CrossRef]
- Roy, K.; Chaudhuri, S.S.; Pramanik, S. Deep learning based real-time Industrial framework for rotten and fresh fruit detection using semantic segmentation. Microsyst. Technol. 2021, 27, 3365–3375. [Google Scholar] [CrossRef]
- Lee, S.H.; Goëau, H.; Bonnet, P.; Joly, A. New perspectives on plant disease characterization based on deep learning. Comput. Electron. Agric. 2020, 170, 105220. [Google Scholar] [CrossRef]
- Liu, B.; Tan, C.; Li, S.; He, J.; Wang, H. A data augmentation method based on generative adversarial networks for grape leaf disease identification. IEEE Access 2020, 8, 102188–102198. [Google Scholar] [CrossRef]
- Liu, B.; Ding, Z.; Tian, L.; He, D.; Li, S.; Wang, H. Grape Leaf Disease Identification Using Improved Deep Convolutional Neural Networks. Front. Plant Sci. 2020, 11, 1082. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 256, 84–90. [Google Scholar] [CrossRef]
- Taye, M.M. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers 2023, 12, 91. [Google Scholar] [CrossRef]
- Apaydin, H.; Feizi, H.; Sattari, M.T.; Colak, M.S.; Shamshirband, S.; Chau, K.-W. Comparative Analysis of Recurrent Neural Network Architectures for Reservoir Inflow Forecasting. Water 2020, 12, 1500. [Google Scholar] [CrossRef]
- Ahmad, J.; Farman, H.; Jan, Z. Deep learning methods and applications. In Deep Learning: Convergence to Big Data Analytics; SpringerBriefs in Computer Science; Springer: Singapore, 2019; pp. 31–42. [Google Scholar]
- Wang, Y.; Xu, C.; Xu, C.; Xu, C.; Tao, D. Learning versatile filters for efficient convolutional neural networks. arXiv, 2018; arXiv:2109.09310. [Google Scholar] [CrossRef]
- Ansari, A.S.; Jawarneh, M.; Ritonga, M.; Jamwal, P.; Mohammadi, M.S.; Veluri, R.K.; Kumar, V.; Shah, M.A. Improved Support Vector Machine and Image Processing Enabled Methodology for Detection and Classification of Grape Leaf Disease. J. Food Qual. 2022, 2022, 9502475. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef] [PubMed]
- Alajas, O.J.; Concepcion, R.; Dadios, E.; Sybingco, E.; Mendigoria, C.H.; Aquino, H. Prediction of Grape Leaf Black Rot Damaged Surface Percentage Using Hybrid Linear Discriminant Analysis and Decision Tree. In Proceedings of the 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, 24–26 June 2021; pp. 1–6. [Google Scholar]
- Matese, A.; Di Gennaro, S.F. Technology in precision viticulture: A state of the art review. Int. J. Wine Res. 2015, 7, 69–81. [Google Scholar] [CrossRef]
- Das, A.J.; Wahi, A.; Kothari, I.; Raskar, R. Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness. Sci. Rep. 2016, 6, 32504. [Google Scholar] [CrossRef]
- Kurtser, P.; Ringdahl, O.; Rotstein, N.; Berenstein, R.; Edan, Y. In-Field Grape Cluster Size Assessment for Vine Yield Estimation Using a Mobile Robot and a Consumer Level RGB-D Camera. IEEE Robot. Autom. Letters 2020, 5, 2031–2038. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2016, arXiv:1506.02640. [Google Scholar]
- Liu, S.; Cossell, S.; Tang, J.; Dunn, G.; Whitty, M. A computer vision system for early stage grape yield estimation based on shoot detection. Comput. Electron. Agric. 2017, 137, 88–101. [Google Scholar] [CrossRef]
- Rudolph, R.; Herzog, K.; Töpfer, R.; Steinhage, V. Efficient identification, localization and quantification of grapevine inflorescences in unprepared field images using Fully Convolutional Networks. J. Grapevine Res. 2019, 58, 95–104. [Google Scholar]
- Rudenko, M.; Plugatar, Y.; Korzin, V.; Kazak, A.; Gallini, N.; Gorbunova, N. The Use of Computer Vision to Improve the Affinity of Rootstock-Graft Combinations and Identify Diseases of Grape Seedlings. Inventions 2023, 8, 92. [Google Scholar] [CrossRef]
- Kazak, A.; Plugatar, Y.; Johnson, J.; Grishin, Y.; Chetyrbok, P.; Korzin, V.; Kaur, P.; Kokodey, T. The Use of Machine Learning for Comparative Analysis of Amperometric and Chemiluminescent Methods for Determining Antioxidant Activity and Determining the Phenolic Profile of Wines. Appl. Syst. Innov. 2022, 5, 104. [Google Scholar] [CrossRef]
- Victorino, G.; Maia, G.; Queiroz, J.; Braga, R.; Marques, J.; Lopes, C. Grapevine yield prediction using image analysis—Improving the estimation of non-visible bunches. In Proceedings of the 12th European Federation for Information Technology in Agriculture, Food and the Environment (EFITA) Conference, Rhodes Island, Greece, 27–29 June 2019; p. 6. [Google Scholar]
- Klodt, M.; Herzog, K.; Töpfer, R.; Cremers, D. Field phenotyping of grapevine growth using dense stereo reconstruction. BMC Bioinform. 2015, 16, 143. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, C.; Li, G.; Chen, L. A real-time table grape detection method based on improved YOLOv4-tiny network in complex background. Biosyst. Eng. 2021, 212, 347–359. [Google Scholar] [CrossRef]
- Aquino, A.; Barrio, I.; Diago, M.P.; Millan, B.; Tardaguila, J. vitisBerry: An Android-smartphone application to early evaluate the number of grapevine berries by means of image analysis. Comput. Electron. Agric. 2018, 148, 19–28. [Google Scholar] [CrossRef]
- Lüling, N.; Reiser, D.; Straub, J.; Stana, A.; Griepentrog, H.W. Fruit Volume and Leaf-Area Determination of Cabbage by a Neural-Network-Based Instance Segmentation for Different Growth Stages. Sensors 2023, 23, 129. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.J.; Toscano, P.; Matese, A.; Di Gennaro, S.F.; Berton, A.; Gatti, M.; Poni, S.; Pádua, L.; Hruška, J.; Morais, R.; et al. UAV-Based Hyperspectral Monitoring Using Push-Broom and Snapshot Sensors: A Multisite Assessment for Precision Viticulture Applications. Sensors 2022, 22, 6574. [Google Scholar] [CrossRef]
- Barriguinha, A.; de Castro Neto, M.; Gil, A. Vineyard Yield Estimation, Prediction, and Forecasting: A Systematic Literature Review. Agronomy 2021, 11, 1789. [Google Scholar] [CrossRef]
- Pádua, L.; Adão, T.; Hruška, J.; Sousa, J.J.; Peres, E.; Morais, R.; Sousa, A. Very High Resolution Aerial Data to Support Multi-Temporal Precision Agriculture Information Management. Procedia Comput. Sci. 2017, 121, 407–414. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree Height Quantification Using Very High Resolution Imagery Acquired from an Unmanned Aerial Vehicle (UAV) and Automatic 3D Photo-Reconstruction Methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
Type of Neural Network | Application Principle | Supervised (+), Unsupervised (−), or Mixed (±) | (±) Scope of Application |
---|---|---|---|
Perceptron Rosenblatt | Pattern recognition, decision making, forecasting, approximation, data analysis | + | Almost any application, except information optimization |
Hopfield | Data compression and associative memory | − | The structure of computer systems |
Kohonen | Clustering, data compression, data analysis, optimization | − | Finance, databases |
Radial basis functions (RBF-network) | Decision making and control, approximation, forecasting | ± | Management structures, neurocontrol |
Convolutional | Pattern recognition | + | Graphic data processing |
Pulse | Decision making, pattern recognition, data analysis | ± | Prosthetics, robotics, telecommunications, computer vision |
Model | Size, Mb | Accuracy Top 1 | Accuracy Top 5 |
---|---|---|---|
VGG16 | 528 | 0.787 | 0.946 |
InceptionV3 | 92 | 0.779 | 0.937 |
ResNet50 | 98 | 0.749 | 0.921 |
Xception | 88 | 0.790 | 0.945 |
InceptionResNetV2 | 215 | 0.803 | 0.953 |
Number | Name | Number of Images |
---|---|---|
1 | Mildew | 1227 |
2 | Oidium | 1250 |
3 | Anthracnose | 608 |
4 | Esca | 250 |
5 | Gray rot | 540 |
6 | Black rot | 360 |
7 | White rot | 360 |
8 | Bacterial cancer of grapes | 250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudenko, M.; Kazak, A.; Oleinikov, N.; Mayorova, A.; Dorofeeva, A.; Nekhaychuk, D.; Shutova, O. Intelligent Monitoring System to Assess Plant Development State Based on Computer Vision in Viticulture. Computation 2023, 11, 171. https://doi.org/10.3390/computation11090171
Rudenko M, Kazak A, Oleinikov N, Mayorova A, Dorofeeva A, Nekhaychuk D, Shutova O. Intelligent Monitoring System to Assess Plant Development State Based on Computer Vision in Viticulture. Computation. 2023; 11(9):171. https://doi.org/10.3390/computation11090171
Chicago/Turabian StyleRudenko, Marina, Anatoliy Kazak, Nikolay Oleinikov, Angela Mayorova, Anna Dorofeeva, Dmitry Nekhaychuk, and Olga Shutova. 2023. "Intelligent Monitoring System to Assess Plant Development State Based on Computer Vision in Viticulture" Computation 11, no. 9: 171. https://doi.org/10.3390/computation11090171
APA StyleRudenko, M., Kazak, A., Oleinikov, N., Mayorova, A., Dorofeeva, A., Nekhaychuk, D., & Shutova, O. (2023). Intelligent Monitoring System to Assess Plant Development State Based on Computer Vision in Viticulture. Computation, 11(9), 171. https://doi.org/10.3390/computation11090171