Numerical Approximations of Diblock Copolymer Model Using a Modified Leapfrog Time-Marching Scheme
Abstract
:1. Introduction
2. Phase Field Models for Diblock Copolymers
3. Numerical Schemes
3.1. Temporal Discretization
- Solve for using the following schemeThe system can have either periodic boundary conditions or the following the physical boundary conditions:
3.2. Spatial Discretization
- We solve for and using the following scheme:
4. Numerical Examples for the Diblock Copolymer Model
4.1. Accuracy Test
4.2. Phase Separations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olszowka, V.; Hund, M.; Kuntermann, V.; Scherdel, S.; Tsarkova, L.; Böker, A.; Krausch, G. Large scale alignment of a lamellar block copolymer thin film viaelectric fields: A time-resolved sfm study. Soft Matter 2006, 2, 1089–1094. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-F.; Dzenis, Y.A. Phase-field modeling of the formation of lamellar nanostructures in diblock copolymer thin films under inplanar electric fields. Phys. Rev. E 2008, 77, 031807. [Google Scholar] [CrossRef] [PubMed]
- Hamley, I.W. The physics of block copolymers. Surf. Interfacial Asp. Biomed. Appl. 1998, 19, 114–125. [Google Scholar]
- Fasolka, M.J.; Mayes, A.M. Block copolymer thin films: Physics and applications. Annu. Rev. Mater. Res. 2001, 31, 323–355. [Google Scholar] [CrossRef]
- Hadjichristidis, N.; Pispas, S.; Floudas, G. Block Copolymers: Synthetic Strategies, Physical Properties, and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2003; pp. 114–125. [Google Scholar]
- Boyer, F.; Minjeaud, S. Numerical schemes for a three component cahn-hilliard model. Math. Model. Numer. Anal. 2011, 45, 697–738. [Google Scholar] [CrossRef]
- Feng, X.; Prol, A. Numerical analysis of the allen-cahn equation and approximation for mean curvature flows. Numer. Math. 2003, 94, 33–65. [Google Scholar] [CrossRef]
- Shen, J.; Yang, X. Numerical approximations of allen-cahn and cahn-hilliard equations. Discret. Contin. Dyn. Syst. A 2010, 28, 1669–1691. [Google Scholar] [CrossRef]
- Aristotelous, A.; Karakashian, O.; Wise, S.M. A mixed discontinuous galerkin, convex splitting scheme for a modified cahn-hilliard equation and an efficient nonlinear multigrid solver. Discret. Contin. Dyn. Syst. B 2013, 18, 2211–2238. [Google Scholar] [CrossRef]
- Jeong, D.; Shin, J.; Li, Y.; Choi, Y.; Jung, J.; Lee, S.; Kim, J. Numerical analysis of energy-minimizing wavelengths of equilibrium states for diblock copolymers. Curr. Appl. Phys. 2014, 14, 1263–1272. [Google Scholar] [CrossRef]
- Eyre, D. Unconditionally gradient stable time marching the cahn-hilliard equation. J. Comput. Phys. 1998, 529, 39–46. [Google Scholar] [CrossRef]
- Liu, C.; Shen, J.; Yang, X. Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J. Sci. Comput. 2015, 62, 601–622. [Google Scholar] [CrossRef]
- Shen, J.; Yang, X.; Yu, H. Efficient energy stable numerical schemes for a phase field moving contact line model. J. Comput. Phys. 2015, 284, 617–630. [Google Scholar] [CrossRef]
- Shen, J.; Yang, X.; Wang, Q. On mass conservation in phase field models for binary fluids. Comm. Compt. Phys. 2012, 13, 1045–1065. [Google Scholar] [CrossRef]
- Zhao, J.; Li, H.; Wang, Q.; Yang, X. A linearly decoupled energy stable scheme for phase-field models of three-phase incompressible flows. J. Sci. Comput. 2017, 70, 1367–1389. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.; Li, J.; Wang, Q. Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM J. Sci. Comput. 2016, 38, A3264–A3290. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.; Shen, J.; Wang, Q. A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 2016, 305, 539–556. [Google Scholar] [CrossRef]
- Ma, L.; Chen, R.; Yang, X.; Zhang, H. Numerical approximations for allen-cahn type phase field model of two-phase incompressible fluids with moving contact lines. Comm. Comput. Phys. 2017, 21, 867–889. [Google Scholar] [CrossRef]
- Chen, R.; Ji, G.; Yang, X.; Zhang, H. Decoupled energy stable schemes for phase-field vesicle membrane model. J. Comput. Phys. 2015, 302, 509–523. [Google Scholar] [CrossRef]
- Yang, X.; Feng, J.J.; Liu, C.; Shen, J. Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J. Comput. Phys. 2006, 218, 417–428. [Google Scholar] [CrossRef]
- Yang, X.; Forest, M.G.; Li, H.; Liu, C.; Shen, J.; Wang, Q.; Chen, F. Modeling and simulations of drop pinch-off from liquid crystal filaments and the leaky liquid crystal faucet immersed in viscous fluids. J. Comput. Phys. 2013, 236, 1–14. [Google Scholar] [CrossRef]
- Xu, C.; Tang, T. Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 2006, 44, 1759–1779. [Google Scholar] [CrossRef]
- Yang, X. Error analysis of stabilized semi-implicit method of allen-cahn equation. Discret. Contin. Dyn. Syst. B 2009, 11, 1057–1070. [Google Scholar] [CrossRef]
- Yu, H.; Yang, X. Decoupled energy stable schemes for phase field model with contact lines and variable densities. J. Comput. Phys. 2017, 334, 665–686. [Google Scholar] [CrossRef]
- Cheng, Q.; Yang, X.F.; Shen, J. Efficient and accurate numerical schemes for a hydro-dynamically coupled phase field diblock copolymer model. J. Comput. Phys. 2017, 341, 44–60. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, C.J.; Yang, X.F. Efficient and energy stable method for the cahn-hilliard phase-field model for diblock copolymers. Appl. Numer. Math. 2020, 151, 263–281. [Google Scholar] [CrossRef]
- Chen, L.Z.; Zhang, Z.Y.; Zhao, J. Numerical approximations of phase field models using a general class of linear time-integration schemes. Commun. Comput. Phys. 2021, 30, 1290–1322. [Google Scholar] [CrossRef]
- Chen, L.Z.; Zhao, J. A novel second-order linear scheme for the cahn-hilliard-navier-stokes equations. J. Comput. Phys. 2020, 423, 109782. [Google Scholar] [CrossRef]
- Chen, L.Z.; Zhao, J.; Gong, Y.Z. A novel second-order scheme for the molecular beam epitaxy model with slope selection. Appl. Numer. Math. 2020, 25, 1024–1044. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.; Gong, Y.; Zhao, X.; Yang, X.; Li, J.; Wang, Q. A general strategy for numerical approximations of non-equilibrium models? Part i: Thermo-dynamical systems. Int. J. Numer. Anal. Model. 2018, 15, 884–918. [Google Scholar]
- Shen, J.; Xu, J.; Yang, J. The scalar auxiliary variable (sav) approach for gradient flows. J. Comput. Phys. 2018, 353, 407–416. [Google Scholar] [CrossRef]
- Han, D.; Wang, X. A second order in time, uniquely solvable, unconditionally stable numerical scheme for cahn-hilliard-navier-stokes equation. J. Commput. Phys. 2015, 290, 139–156. [Google Scholar] [CrossRef]
- Han, D.; Brylev, A.; Yang, X.; Tan, Z. Numerical analysis of second order, fully discrete energy stable schemes for phase field models of two phase incompressible flows. J. Sci. Comput. 2017, 70, 965–989. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Ma, Y.; Ren, B.; Zhang, G. Numerical Approximations of Diblock Copolymer Model Using a Modified Leapfrog Time-Marching Scheme. Computation 2023, 11, 215. https://doi.org/10.3390/computation11110215
Chen L, Ma Y, Ren B, Zhang G. Numerical Approximations of Diblock Copolymer Model Using a Modified Leapfrog Time-Marching Scheme. Computation. 2023; 11(11):215. https://doi.org/10.3390/computation11110215
Chicago/Turabian StyleChen, Lizhen, Ying Ma, Bo Ren, and Guohui Zhang. 2023. "Numerical Approximations of Diblock Copolymer Model Using a Modified Leapfrog Time-Marching Scheme" Computation 11, no. 11: 215. https://doi.org/10.3390/computation11110215
APA StyleChen, L., Ma, Y., Ren, B., & Zhang, G. (2023). Numerical Approximations of Diblock Copolymer Model Using a Modified Leapfrog Time-Marching Scheme. Computation, 11(11), 215. https://doi.org/10.3390/computation11110215