Time-Dependent Two-Dimensional Model of Overlimiting Mass Transfer in Electromembrane Systems Based on the Nernst–Planck, Displacement Current and Navier–Stokes Equations
Abstract
:1. Introduction
- Underlimiting current: at low current densities, the concentration of ions in the near-membrane region is quite high, and the CVC is in a linear shape in this region. The selective transfer of counterions in the membrane during the flow of the electric current through the ion-exchange membrane reduces the concentration of ions on one side of the membrane and increases on the other (the phenomenon of concentration polarization). As the current density increases, almost complete depletion of ions in the region near the membrane surface and the transition of the system to the limiting state are observed [14,15].
- Overlimiting current: a secondary increase in current indicates an increase in the conductivity of the depleted region. For the diluted electrolyte solutions considered in this work, the main mechanism that destroys the depleted region and provides an overlimiting mass transfer is electroconvection, which is confirmed by many theoretical [18,19,20,21] and experimental [8,9,10,11,12,13] studies. Electroconvection is the entrainment of liquid molecules by ions that form the space charge at the ion-selective surface under the action of the electric force [22]. During the passage of the overlimiting current, when a macroscopic space charge region (SCR) is formed at the solution/membrane interface, the intensity of electroconvection increases [23].
2. Methods
2.1. Modeling Assumptions
2.2. Model Formulation
2.3. System Parameters
2.4. Estimation of Calculation Error
2.5. Model Implementation
3. Results and Discussion
3.1. Model Validation
3.1.1. Comparison of Chronopotentiograms Calculated on the Basis of NPP–NS and NPD–NS Approaches
- the initial fast ohmic growth of the potential drop;
- the section of monotonic growth of the potential drop caused by electrodiffusion desalination of the solution. The growth rate of the potential drop increases rapidly after the depletion of the concentration at the solution/membrane interface;
- the transitional section associated with the development of electroconvection;
- the stationary section characterized by both a constant potential drop and a constant average velocity of the electroconvective flow.
3.1.2. Comparison of Mass Transfer Characteristics Calculated for Galvanostatic and Potentiostatic Modes
3.2. Assessment of the Computational Complexity of the Model
4. Conclusions
- (1)
- Good quantitative coincidence of ChPs in all characteristic sections, including the initial sharp ohmic growth, monotonic slow electrodiffusion growth, the transition region of the development of electroconvection and the establishment of a stationary state;
- (2)
- Good agreement between the characteristics of mass transfer after the establishment of the stationary state, calculated for the galvanostatic and potentiostatic modes.
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
1D | one dimensional |
2D | two dimensional |
AEM | anion-exchange membrane |
CEM | cation-exchange membrane |
ChP | chronopotentiogram |
CVC | current–voltage characteristic |
NPD | Nernst–Planck and displacement current system of equations |
NPD–NS | Nernst–Planck, displacement current and Navier–Stokes system of equations |
NPP | Nernst–Planck–Poisson system of equations |
NPP–NS | Nernst–Planck–Poisson and Navier–Stokes system of equations |
SCR | space charge region |
Symbols | |
c0 | concentration of electrolyte, mol/m3 |
cn | molar concentration of ion n, mol/m3 |
D | diffusion coefficient of electrolyte, m2/s |
Dn | diffusion coefficient of ion n, m2/s |
E | electric strength, V/m |
F | Faraday constant, C/mol |
H | intermembrane distance, m |
i | current density, A/m2 |
ilim | limiting current density, A/m2 |
jn | flux density of ion n, mol/(m2·s) |
L | length of the channel, m |
Nc | ratio of the concentration of cations to the initial concentration of the solution |
P | pressure, Pa |
R | universal gas constant, J/(mol·K) |
r0 | calculation error at x = 0 |
rδ | calculation error at x= δ |
T | absolute temperature, K |
t | time, s |
tn | transport number of ion n in electrolyte solution |
TnC | transport number of ion n in cation-exchange membrane |
velocity of the solution, m/s | |
x | normal to membrane coordinate, m |
y | tangential coordinate, m |
zn | charge number of ion n |
Greek symbols | |
γ | maximum relative error of the calculation of the potential drop |
δ | depleted diffusion layer thickness, m |
ε0 | electric constant, F/m |
εr | relative permittivity of the electrolyte solution |
η | electric current stream function, A/m |
ν | kinematic viscosity, m2/s |
ρ0 | solution density, kg/m3 |
φ | electric potential, V |
Subscripts | |
1 | cation |
2 | anion |
av | average |
lim | limiting |
pot | potentiostatic mode |
tot | total |
R | right |
L | left |
References
- Kim, S.J.; Song, Y.-A.; Han, J. Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: Theory, fabrication, and applications. Chem. Soc. Rev. 2010, 39, 912–922. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Gurreri, L.; Tamburini, A.; Cipollina, A.; Micale, G. Electrodialysis Applications in Wastewater Treatment for Environmen-tal Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. Membranes 2020, 10, 146. [Google Scholar] [CrossRef]
- Strathmann, H. Ion-Exchange Membrane Processes in Water Treatment. Sustain. Sci. Eng. 2010, 2, 141–199. [Google Scholar] [CrossRef]
- Wilson, J.R. Demineralization by Electrodialysis; Butterworths Scientific Publications: London, UK, 1960. [Google Scholar]
- Belova, E.I.; Lopatkova, G.Y.; Pismenskaya, N.D.; Nikonenko, V.V.; Larchet, C.; Pourcelly, G. Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer. J. Phys. Chem. B 2006, 110, 13458–13469. [Google Scholar] [CrossRef]
- Nikonenko, V.V.; Kovalenko, A.V.; Urtenov, M.K.; Pismenskaya, N.D.; Han, J.; Sistat, P.; Pourcelly, G. Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination 2014, 342, 85–106. [Google Scholar] [CrossRef]
- Maletzki, F.; Rosler, H.W.; Staude, E. Ion transfer across electrodialysis membranes in the overlimiting current range: Stationary voltage current characteristics and current noise power spectra under different conditions of free convection. J. Membr. Sci. 1992, 71, 105–116. [Google Scholar] [CrossRef]
- Zabolotsky, V.I.; Nikonenko, V.V.; Pismenskaya, N.D.; Laktionov, E.V.; Urtenov, M.K.; Strathmann, H.; Wessling, M.; Koops, G.H. Coupled transport phenomena in overlimiting current electrodialysis. Sep. Purif. Technol. 1998, 14, 255–267. [Google Scholar] [CrossRef]
- Rubinshtein, I.; Zaltzman, B.; Pretz, J.; Linder, C. Experimental Verification of the Electroosmotic Mechanism of Overlimiting Conductance Through a Cation Exchange Electrodialysis Membrane. Russ. J. Electrochem. 2002, 38, 853–863. [Google Scholar] [CrossRef]
- Pismenskaya, N.D.; Nikonenko, V.V.; Belova, E.I.; Lopatkova, G.Y.; Sistat, P.; Pourcelly, G.; Larshet, C. Coupled convection of solution near the surface of ion-exchange membranes in intensive current regimes. Russ. J. Electrochem. 2007, 43, 307–327. [Google Scholar] [CrossRef]
- Rubinstein, S.M.; Manukyan, G.; Staicu, A.; Rubinstein, I.; Zaltzman, B.; Lammertink, R.G.H. Direct Observation of a Nonequilibrium Electro-Osmotic Instability. Phys. Rev. Lett. 2008, 101, 236101. [Google Scholar] [CrossRef] [PubMed]
- Kwak, R.; Guan, G.; Peng, W.K.; Han, J. Microscale electrodialysis: Concentration profiling and vortex visualization. Desalination 2013, 308, 138–146. [Google Scholar] [CrossRef]
- Shaposhnik, V.A.; Vasileva, V.I.; Praslov, D.B. Concentration Fields of Solutions under Electrodialysis with Ion-Exchange Membranes. J. Membr. Sci. 1995, 101, 23–30. [Google Scholar] [CrossRef]
- Shaposhnik, V.A.; Vasil’eva, V.I.; Grigorchuk, O.V. The interferometric investigations of electromembrane processes. Adv. Colloid Interf. Sci. 2008, 139, 74–82. [Google Scholar] [CrossRef]
- Frilette, V.J. Electrogravitational Transport at Synthetic Ion Exchange Membrane Surfaces. J. Phys. Chem. 1957, 61, 168–174. [Google Scholar] [CrossRef]
- Balster, J.; Yildirim, M.H.; Stamatialis, D.F.; Ibanez, R.; Lammertink, R.G.H.; Jordan, V.; Wessling, M. Morphology and microtopology of cation-exchange polymers and the origin of the overlimiting current. J. Phys. Chem. B 2007, 111, 2152–2165. [Google Scholar] [CrossRef]
- Rubinstein, I.; Zaltzman, B. Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E 2000, 62, 2238–2251. [Google Scholar] [CrossRef]
- Demekhin, E.A.; Shelistov, V.S.; Polyanskikh, S.V. Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability. Phys. Rev. E 2011, 84, 036318. [Google Scholar] [CrossRef]
- Urtenov, M.K.; Uzdenova, A.M.; Kovalenko, A.V.; Nikonenko, V.V.; Pismenskaya, N.D.; Vasil’eva, V.I.; Sistat, P.; Pourcelly, G. Basic mathematical model of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis membrane cells. J. Membr. Sci. 2013, 447, 190–202. [Google Scholar] [CrossRef]
- Kwak, R.; Pham, V.S.; Lim, K.M.; Han, J. Shear Flow of an Electrically Charged Fluid by Ion Concentration Polarization: Scaling Laws for Electroconvective Vortices. Phys. Rev. Lett. 2013, 110, 114501. [Google Scholar] [CrossRef]
- Nikonenko, V.V.; Mareev, S.A.; Pis’menskaya, N.D.; Uzdenova, A.M.; Kovalenko, A.V.; Urtenov, M.K.; Pourcelly, G. Effect of Electroconvection and Its Use in Intensifying the Mass Transfer in Electrodialysis (Review). Russ. J. Electrochem. 2017, 53, 1122–1144. [Google Scholar] [CrossRef]
- Rubinstein, I.; Shtilman, L. Voltage against current curves of cation exchange membranes. J. Chem. Soc. Faraday Trans. 1979, 75, 231–246. [Google Scholar] [CrossRef]
- Zabolotsky, V.I.; Nikonenko, V.V. Ion Transport in Membranes; (In Russian). Nauka: Moscow, Russia, 1996. [Google Scholar]
- Newman, J.; Balsara, N.P. Electrochemical Systems, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Mani, A.; Wang, K.M. Electroconvection Near Electrochemical Interfaces: Experiments, Modeling, and Computation. Annu. Rev. Fluid Mech. 2020, 52, 509–529. [Google Scholar] [CrossRef]
- Yaroslavtsev, A.B.; Nikonenko, V.V.; Zabolotsky, V.I. Ion transfer in ion-exchange and membrane materials. Russ. Chem. Rev. 2003, 72, 393–421. [Google Scholar] [CrossRef]
- Manzanares, J.A.; Murphy, W.D.; Mafe, S.; Reiss, H. Numerical Simulation of the Nonequilibrium Diffuse Double Layer in Ion-Exchange Membranes. J. Phys. Chem. 1993, 97, 8524–8530. [Google Scholar] [CrossRef]
- Levich, V.G. Physicochemical Hydrodynamics; Prentice Hall: New York, NY, USA, 1962. [Google Scholar]
- Liu, W.; Zhou, Y.; Shi, P. Shear electroconvective instability in electrodialysis channel under extreme depletion and its scaling laws. Phys. Rev. E 2020, 101, 043105. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, Y.; Shi, P. Scaling relations in shear electroconvective vortices. Phys. Fluids 2020, 32, 072009. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, Y.; Shi, P. Critical selection of shear sheltering in electroconvective flow from chaotic to steady state. J. Fluid Mech. 2022, 946, A3. [Google Scholar] [CrossRef]
- Kwak, R.; Pham, V.; Han, J. Sheltering the perturbed vortical layer of electroconvection under shear flow. J. Fluid Mech. 2017, 813, 799–823. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, Y.; Shi, P. Sheltering electroconvective instability in a weak electrolyte. Phys. Fluids 2021, 33, 072011. [Google Scholar] [CrossRef]
- Demekhin, E.A.; Nikitin, N.V.; Shelistov, V.S. Direct Numerical Simulation of Electrokinetic Instability and Transition to Chaotic Motion. Phys. Fluids 2013, 25, 122001. [Google Scholar] [CrossRef]
- Druzgalski, C.; Mani, A. Statistical analysis of electroconvection near an ion-selective membrane in the fully chaotic regime. Phys. Rev. Fluids 2016, 1, 073601. [Google Scholar] [CrossRef]
- Magnico, P. Electro-Kinetic Instability in a Laminar Boundary Layer Next to an Ion Exchange Membrane. Int. J. Mol. Sci. 2019, 20, 2393. [Google Scholar] [CrossRef] [PubMed]
- Uzdenova, A.M.; Kovalenko, A.V.; Urtenov, M.K.; Nikonenko, V.V. Effect of electroconvection during pulsed electric field electrodialysis: Numerical experiments. Electrochem. Commun. 2015, 51, 1–5. [Google Scholar] [CrossRef]
- Karatay, E.; Andersen, M.B.; Wessling, M.; Mani, A. On the coupling between buoyancy forces and electroconvective instability near ion-selective surfaces. Phys. Rev. Lett. 2016, 116, 194501. [Google Scholar] [CrossRef]
- Shi, P. Direct numerical simulation of electroconvection with thin Debye layer matching canonical experiments. Phys. Fluids 2021, 33, 032015. [Google Scholar] [CrossRef]
- Kovalenko, A.V.; Nikonenko, V.V.; Chubyr, N.O.; Urtenov, M.K. Mathematical modeling of electrodialysis of a dilute solution with accounting for water dissociation-recombination reactions. Desalination 2023, 550, 116398. [Google Scholar] [CrossRef]
- Leon, T.; Lopez, J.; Torres, R.; Grau, J.; Jofre, L.; Cortina, J.-L. Describing ion transport and water splitting in an electrodialysis stack with bipolar membranes by a 2-D model: Experimental validation. J. Membr. Sci. 2022, 660, 120835. [Google Scholar] [CrossRef]
- Moya, A.A. Electrochemical impedance of ion-exchange systems with weakly charged membranes. Ionics 2013, 19, 1271–1283. [Google Scholar] [CrossRef]
- Uzdenova, A.M.; Kovalenko, A.V.; Urtenov, M.K.; Nikonenko, V.V. 1D Mathematical Modelling of Non-Stationary Ion Transfer in the Diffusion Layer Adjacent to an Ion-Exchange Membrane in Galvanostatic Mode. Membranes 2018, 8, 84. [Google Scholar] [CrossRef]
- Uzdenova, A. 2D mathematical modelling of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis membrane cells in galvanodynamic mode. Membranes 2019, 9, 39. [Google Scholar] [CrossRef]
- Mareev, S.A.; Nebavskiy, A.V.; Nichka, V.S.; Urtenov, M.K.; Nikonenko, V.V. The nature of two transition times on chronopotentiograms of heterogeneous ion exchange membranes: 2D modelling. J. Membr. Sci. 2019, 575, 179–190. [Google Scholar] [CrossRef]
- Uzdenova, A.; Urtenov, M. Potentiodynamic and Galvanodynamic Regimes of Mass Transfer in Flow-Through Electrodialysis Membrane Systems: Numerical Simulation of Electroconvection and Current-Voltage Curve. Membranes 2020, 10, 49. [Google Scholar] [CrossRef] [PubMed]
- Green, Y. Approximate time-dependent current-voltage relations for currents exceeding the diffusion limit. Phys. Rev. E 2020, 101, 043113. [Google Scholar] [CrossRef] [PubMed]
- Uzdenova, A.; Urtenov, M. Mathematical Modeling of the Phenomenon of Space-Charge Breakdown in the Galvanostatic Mode in the Section of the Electromembrane Desalination Channel. Membranes 2021, 11, 873. [Google Scholar] [CrossRef]
- Uzdenova, A.; Kovalenko, A.; Urtenov, M. Theoretical Analysis of Electroconvection in the Electrodialysis Desalination Channel under the Action of Direct Current. Membranes 2022, 12, 1125. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Cooley, J.W. The Numerical Solution of the Time-Dependent Nernst–Planck Equations. Biophys. J. 1965, 5, 145. [Google Scholar] [CrossRef]
- Brumleve, T.R.; Buck, R.P. Numerical solution of the Nernst–Planck and Poisson equation system with applications to membrane electrochemistry and solid state physics. J. Electroanal. Chem. 1978, 90, 1–31. [Google Scholar] [CrossRef]
- Urtenov, M.A.K. Boundary Value Problems for Systems of Nernst–Planck-Poisson Equations (Factorization, Decomposition, Models, Numerical Analysis); Universervis: Krasnodar, Russia, 1998. (In Russian) [Google Scholar]
- Lavrentyev, A.V.; Pismensky, A.V.; Urtenov, M.K. Mathematical Modeling of Transport in Electromembrane Systems Taking into Account Convective Flows; KubSTU: Krasnodar, Russia, 2006. (In Russian) [Google Scholar]
- Kovalenko, A.V.; Khromykh, A.A.; Urtenov, M.K. Decomposition of a two-dimensional system of equations Nernst–Planck–Poisson for ternary electrolyte. Bull. Russ. Acad. Sci. 2014, 458, 526. [Google Scholar] [CrossRef]
- Uzdenova, A.M. Ion Transport in Electromembrane Systems under the Passage of Direct Current: 1D Modelling Approaches. Membranes 2023, 13, 421. [Google Scholar] [CrossRef]
- Roache, P.J. Computational Fluid Dynamics; Hermosa Publishers: Albuquerque, NM, USA, 1976. [Google Scholar]
- Pismensky, A.V.; Urtenov, M.K.; Nikonenko, V.V.; Sistat, P.; Pismenskaya, N.D.; Kovalenko, A.V. Model and Experimental Studies of Gravitational Convection in an Electromembrane Cell. Russ. J. Electrochem. 2012, 48, 756–766. [Google Scholar] [CrossRef]
- Mareev, S.A.; Nichka, V.S.; Butylskii, D.Y.; Urtenov, M.K.; Pismenskaya, N.D.; Apel, P.Y.; Nikonenko, V.V. Chronopotentiometric Response of Electrically Heterogeneous Permselective Surface: 3D Modeling of Transition Time and Experiment. J. Phys. Chem. C 2016, 120, 13113–13119. [Google Scholar] [CrossRef]
- Larchet, C.; Nouri, S.; Auclair, B.; Dammak, L.; Nikonenko, V. Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection. Adv. Colloid Interface Sci. 2008, 139, 45–61. [Google Scholar] [CrossRef]
- Nikonenko, V.V.; Vasil’eva, V.I.; Akberova, E.M.; Uzdenova, A.M.; Urtenov, M.K.; Kovalenko, A.V.; Pismenskaya, N.D.; Mareev, S.A.; Pourcelly, G. Competition between diffusion and electroconvection at an ion-selective surface in intensive current regimes. Adv. Colloid Interface Sci. 2016, 235, 233–246. [Google Scholar] [CrossRef]
- Uzdenova, A.M.; Kovalenko, A.V.; Urtenov, M.K.; Nikonenko, V.V. Theoretical analysis of the effect of ion concentration in solution bulk and at membrane surface on the mass transfer at overlimiting currents. Russ. J. Electrochem. 2017, 53, 1254–1265. [Google Scholar] [CrossRef]
- Urtenov, M.A.K.; Kirillova, E.V.; Seidova, N.M.; Nikonenko, V.V. Decoupling of the Nernst–Planck and Poisson equations, Application to a membrane system at overlimiting currents. J. Phys. Chem. B 2007, 11151, 14208–14222. [Google Scholar] [CrossRef] [PubMed]
- Comsol Multiphysics Reference Manual. Available online: https://doc.comsol.com/6.1/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf (accessed on 10 June 2023).
- de Valenca, J.C.; Wagterveld, R.M.; Lammertink, R.G.H.; Tsai, P.A. Dynamics of microvortices induced by ion concentration polarization. Phys. Rev. E 2015, 92, 031003. [Google Scholar] [CrossRef]
- Valenca, J.; Jogi, M.; Wagterveld, R.M.; Karatay, E.; Wood, J.A.; Lammertink, R.G.H. Confined electroconvective vortices at structured ion exchange membranes. Langmuir 2018, 34, 2455–2463. [Google Scholar] [CrossRef] [PubMed]
- Krol, J.J.; Wessling, M.; Strathmann, H. Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes. J. Membr. Sci. 1999, 162, 155–164. [Google Scholar] [CrossRef]
- Titorova, V.D.; Mareev, S.A.; Gorobchenko, A.D.; Gil, V.V.; Nikonenko, V.V.; Sabbatovskii, K.G.; Pismenskaya, N.D. Effect of current-induced coion transfer on the shape of chronopotentiograms of cation-exchange membranes. J. Membr. Sci. 2021, 624, 119036. [Google Scholar] [CrossRef]
- Barros, K.S.; Martí-Calatayud, M.C.; Scarazzato, T.; Bernardes, A.M.; Espinosa, D.C.R.; Pérez-Herranz, V. Investigation of ion-exchange membranes by means of chronopotentiometry: A comprehensive review on this highly informative and multipurpose technique. Adv. Colloid Interface Sci. 2021, 293, 102439. [Google Scholar] [CrossRef] [PubMed]
, V | ||
---|---|---|
0.5 | 0.042 | 0.500 |
1 | 0.382 | 1.000 |
1.5 | 0.640 | 1.509 |
2 | 0.794 | 1.995 |
Maximum Time Step, s | , s | |||||
---|---|---|---|---|---|---|
NPPR–NS | NPPL–NS | NPD–NS | NPPR–NS | NPPL–NS | NPD–NS | |
0.5 | 0.001 | 0.002 | 0.001 | 517 | 451 | 490 |
1 | 0.001 | 0.002 | 0.0002 | 516 | 460 | 1589 |
1.5 | 0.001 | 0.002 | 0.0002 | 504 | 424 | 1543 |
2 | 0.001 | 0.002 | 0.0002 | 495 | 435 | 1650 |
, % | , % | |||||
---|---|---|---|---|---|---|
NPPR–NS | NPPL–NS | NPD–NS | NPPR–NS | NPPL–NS | NPD–NS | |
0.5 | 0.140 | 0.126 | 0.140 | |||
1 | 0.295 | 0.132 | 0.282 | |||
1.5 | 0.142 | 0.440 | 0.760 | 0.413 | ||
2 | 0.193 | 0.581 | 0.465 | 0.535 |
, % | , % | |||||
---|---|---|---|---|---|---|
NPPR–NS | NPPL–NS | NPD–NS | NPPR–NS | NPPL–NS | NPD–NS | |
0.5 | 0.140 | 0.140 | ||||
1 | 0.295 | 0.280 | ||||
1.5 | 0.433 | 0.407 | ||||
2 | 0.580 | 0.535 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzdenova, A. Time-Dependent Two-Dimensional Model of Overlimiting Mass Transfer in Electromembrane Systems Based on the Nernst–Planck, Displacement Current and Navier–Stokes Equations. Computation 2023, 11, 205. https://doi.org/10.3390/computation11100205
Uzdenova A. Time-Dependent Two-Dimensional Model of Overlimiting Mass Transfer in Electromembrane Systems Based on the Nernst–Planck, Displacement Current and Navier–Stokes Equations. Computation. 2023; 11(10):205. https://doi.org/10.3390/computation11100205
Chicago/Turabian StyleUzdenova, Aminat. 2023. "Time-Dependent Two-Dimensional Model of Overlimiting Mass Transfer in Electromembrane Systems Based on the Nernst–Planck, Displacement Current and Navier–Stokes Equations" Computation 11, no. 10: 205. https://doi.org/10.3390/computation11100205
APA StyleUzdenova, A. (2023). Time-Dependent Two-Dimensional Model of Overlimiting Mass Transfer in Electromembrane Systems Based on the Nernst–Planck, Displacement Current and Navier–Stokes Equations. Computation, 11(10), 205. https://doi.org/10.3390/computation11100205