Constructing a Region DSGE Model with Institutional Features of Territorial Development
Abstract
:1. Introduction
2. Literature Review
2.1. DSGE Method in Regional Development Research
2.2. Accounting for Heterogeneity of Regions
2.3. Innovations
3. DSGE Model Method
3.1. Household sector
3.2. Real Sector
3.3. Budget Sector
- labor supply and consumption by increasing the number of households (by reducing mortality, including those of working age), as well as by reducing morbidity and increasing their life expectancy;
- total factor productivity . In particular, labor productivity increases with the development of education and science, and the growth of acquired knowledge, skills, and abilities.
3.4. Relationship between Regions
4. Linearization and Calibration
4.1. System of Linearized Equations
4.2. Calibration Parameters
5. Simulation Results
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serkov, L.A. Inter-Regional Inflation Differential as a Consequence of Heterogeneity of the Russian Economic Space. Econ. Reg. 2020, 16, 325–339. [Google Scholar] [CrossRef]
- Napalkov, V.V.; Novak, A.E.; Shul’gin, A.G. Razlichija v jeffektah edinoj denezhno-kreditnoj politiki: Sluchaj regio-nov Rossii. Money Financ. 2021, 80, 3–45. [Google Scholar] [CrossRef]
- Over Consumption. A Horse Race of Bayesian DSGE Models. Available online: https://www.researchgate.net/publication/281548845_Over_consumption_A_horse_race_of_Bayesian_DSGE_models (accessed on 5 May 2022).
- Andreyev, M.Y.; Polbin, A.V. Trends of macroeconomic models. Adm. Consult. 2019, 2, 24–33. [Google Scholar] [CrossRef]
- Two-Region DSGE Analysis of Regionally Targeted Fiscal Policy. Available online: https://www.researchgate.net/publication/287552300_Two-Region_DSGE_Analysis_of_Regionally_Targeted_Fiscal_Policy (accessed on 17 February 2022).
- Krugman, P. First nature, second nature, and metropolitan location. J. Reg. Sci. 1993, 33, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Pede, V.O.; Florax, R.J.G.M.; de Groot, H.L.F.; Barboza, G. Technological leadership and sectorial employment growth: A spatial econometric analysis for U.S. counties. Econ. Notes 2021, 50, 1–19. Available online: https://research.vu.nl/ws/files/123661099/Technological_leadership_and_sectorial_employment_growth.pdf (accessed on 5 May 2022). [CrossRef]
- Benhabib, J.; Spiegel, M. The role of human capital in economic development: Evidence from aggregate cross- country data. J. Monet. Econ. 1994, 34, 143–173. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, C. The Role of the Composition of the Human Capital on the Economic Growth: With the Spatial Effect among Provinces in China. Mod. Econ. 2015, 6, 770–781. [Google Scholar] [CrossRef] [Green Version]
- Argentiero, A.; Cerqueti, R.; Sabatini, F. Does social capital explain the Solow residual? A DSGE approach. MPRA Pap. 2018, 87100, 1–31. Available online: https://mpra.ub.uni-muenchen.de/87100/ (accessed on 5 May 2022). [CrossRef]
- Felice, E. Regional convergence in Italy, 1891–2001: Testing human and social capital. Cliometrica 2012, 6, 267–306. [Google Scholar] [CrossRef]
- Becker, G.S. Investment in Human Capital: A Theoretical Analysis. J. Political Econ. 1962, 5, 9–49. [Google Scholar] [CrossRef]
- Dubrovskaya, J.V. Analysis of heterogeneity of economic development of territories in the conditions of digitalization. Her. Omsk. University. Ser. «ECONOMICS» 2020, 2, 102–113. [Google Scholar] [CrossRef]
- Granberg, A.R. Osnovy Regional’noi Ekonomiki; HSE Publishing House: Moscow, Russian, 2001. [Google Scholar]
- Adolfson, M.; Lassen, S.; Linde, J.; Villani, M. RAMSES—A new general equilibrium model for monetary policy analysis. Sver. Riksbank Econ. Rev. 2007, 2, 5–40. [Google Scholar]
- Harrison, R.; Nikolov, K.; Quinn, M.; Ramsay, G.; Scott, A.; Thomas, R. The Bank of England Quarterly Model; Bank of England: London, UK, 2005; p. 244. [Google Scholar]
- Murchison, S.; Rennison, A. ToTEM: The Bank of Canada’s New Quarterly Projection Model; Technical Report 97; Bank of Canada: Ottawa, ON, Canada, 2006; p. 120. [Google Scholar]
- Andreyev, M.Y.; Polbin, A.V. The Impact of Fiscal Policy on Macroeconomic Indicators in DSGE-models. Financ. J. 2018, 3, 21–33. [Google Scholar] [CrossRef]
- Rui, W. Evaluating the Unconventional Monetary Policy of the Bank of Japan: A DSGE Approach. J. Risk Financ. Manag. 2021, 14, 253. [Google Scholar] [CrossRef]
- Serkov, L.A.; Krasnykh, S.S. Combining the agent approach and the general equilibrium approach to analyze the influence of the shadow sector on the Russian economy. Comput. Res. Modeling 2020, 12, 669–684. [Google Scholar] [CrossRef]
- Sun, D.; Wang, F.; Chen, N.; Chen, J. The Impacts of Technology Shocks on Sustainable Development from the Perspective of Energy Structure—A DSGE Model Approach. Sustainability 2021, 13, 8665. [Google Scholar] [CrossRef]
- Chan, Y.T. The Environmental Impacts and Optimal Environmental Policies of Macroeconomic Uncertainty Shocks: A Dynamic Model Approach. Sustainability 2019, 11, 4993. [Google Scholar] [CrossRef] [Green Version]
- Niu, T.; Yao, X.; Shao, S.; Li, D.; Wang, W. Environmental tax shocks and carbon emissions: An estimated DSGE model. Struct. Change Econ. Dyn. 2018, 47, 9–17. [Google Scholar] [CrossRef]
- Xiao, B.; Fan, Y.; Guo, X. Exploring the macroeconomic fluctuations under different environmental policies in China: A DSGE approach. Energy Econ. 2018, 76, 439–456. [Google Scholar] [CrossRef]
- Argentiero, A.; Atalla, T.; Bigerna, S.; Micheli, S.; Polinori, P. Comparing Renewable Energy Policies in EU-15, US and China: A Bayesian DSGE Model. Energy J. 2017, 38, 77–96. [Google Scholar] [CrossRef]
- Balke, N.S.; Brown, S.P.A. Oil supply shocks and the US economy: An estimated DSGE model. Energy Policy 2018, 116, 357–372. [Google Scholar] [CrossRef]
- Baluta, V.I.; Shul’ts, D.N.; Lavrinenko, P.A. Assessing the Impact of Global Hydrocarbon Prices on the Russian Economy Based on the DSGE Model with Capital-Owning Firms. Stud. Russ. Econ. Dev. 2022, 33, 107–117. [Google Scholar] [CrossRef]
- Duarte, M.; Wolman, A.L. Fiscal policy and regional inflation in a currency Union. J. Int. Econ. 2008, 74, 384–401. [Google Scholar] [CrossRef] [Green Version]
- Tamegawa, K. Constructing a Small-Region DSGE Model. ISRN Econ. 2013, 2013, 825862. [Google Scholar] [CrossRef]
- Serkov, L.A. Regional dynamic stochastic general equilibrium model as a tool for analysis of fiscal policy. Perm Univ. Her. Econ. 2019, 2, 248–267. [Google Scholar]
- Gurgand, M. Capital humain et croissance: La littérature empirique à un tournant? Public Econ. 2000, 2, 71–93. [Google Scholar] [CrossRef]
- Barro, R.J.; Sala-i-Martin, X. Economic Growth, 2nd ed.; MIT Press: Cambridge, MA, USA, 2004; p. 654. [Google Scholar]
- Koritskiy, A.V.; Karelin, I.N.; Semenikhina, V.A. Estimating state financial benefits of education in Russia. Vestn. NSUEM 2017, 1, 64–82. [Google Scholar]
- Berezovskaya, A.G.; Koritsky, A.V. Assessment of the impact of workers’ education in the regions of Russia on volumes of production of gross regional product. World Econ. Manag. 2018, 18, 42–54. [Google Scholar] [CrossRef]
- Shtercer, T.A. Rol’ chelovecheskogo kapitala v jekonomicheskom razvitii regionov RF. Mir Jekonomiki I Upr.-Nija 2006, 6, 37–51. [Google Scholar]
- Popescu, C. Measuring Progress towards the Sustainable Development Goals: Creativity, Intellectual Capital, and Innovation. In Handbook of Research on Novel Practices and Current Successes in Achieving the Sustainable Development Goals; Popescu, C., Ed.; IGI Global: Hershey, PA, USA, 2021; pp. 125–136. [Google Scholar] [CrossRef]
- Tarasova, O.V. Infrastructure of Spatial Development of the Russian Federation: Transport, Energy, Innovative System, Life Support; IEIE SB RAS: Novosibirsk, Russia, 2020; p. 456. [Google Scholar]
- Bykova, A.V.; Solodukhin, K.S. The Origination and Development of the Public Health Concept as an Investee: Theoretical Forerunners. Natl. Interests Priorities Secur. 2020, 16, 1765–1779. [Google Scholar] [CrossRef]
- Bloom, D.E.; Malaney, P.N. Macroeconomic consequences of the Russian mortality crisis. World Dev. 1998, 26, 2073–2085. [Google Scholar] [CrossRef]
- Bhargava, A.; Jamison, D.T.; Lau, L.J.; Murray, C.J.L. Modeling the effects of health on economic growth. J. Health Econ. 2001, 20, 423–440. [Google Scholar] [CrossRef]
- Kelly, M. Health capital accumulation, health insurance, and aggregate outcomes: A neoclassical approach. J. Macroecon. 2017, 52, 1–22. [Google Scholar] [CrossRef]
- Russell, K.C. Two Years Later: A Qualitative Assessment of Youth Well-Being and the Role of Aftercare in Outdoor Behavioral Healthcare Treatment. Child Youth Care Forum 2005, 34, 209–239. [Google Scholar] [CrossRef]
- Demidova, O.A.; Kajasheva, E.V.; Dem’janenko, A.V. Gosudarstvennye rashody na zdravoohranenie i jekonomicheskij rost v Rossii: Regional’nyj aspect. Prostranstvennaja Jekonomika 2021, 1, 97–122. [Google Scholar]
- Kaneva, M.A. Vlijanie kapitala zdorov’ja naselenija na jekonomicheskoj rost regionov RF. Reg. Econ. Sociol. 2019, 1, 47–70. [Google Scholar]
- Barro, R. Health and Economic Growth. Ann. Econ. Financ. 2013, 14, 329–366. [Google Scholar]
- Zhou, D.; Zhou, M. Mathematical Model and Optimization Methods of Wide-Scale Pooled Sample Testing for COVID-19. Mathematics 2022, 10, 1183. [Google Scholar] [CrossRef]
- Popescu, C.R.G. COVID-19 Pandemic Impact on New Economy Development and Societal Change; IGI Global: Hershey, PA, USA, 2021. [Google Scholar] [CrossRef]
- Uhlig, H.A. Toolkit for Analysing Nonlinear Dynamic Stochastic Models Easily. In Computational Methods for the Study of Dynamic Economies; Marion, R., Scott, A., Eds.; Oxford University Press: New York, NY, USA, 1999; pp. 30–61. [Google Scholar]
- DeJong, D.; Dave, C. Structural Macroeconometrics, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Blanchard, O.J.; Kahn, C.M. The solution of linear difference models under rational expectations. Econometrica 1980, 48, 1305–1312. [Google Scholar] [CrossRef]
- Klein, P. Using the generalized Schur form to solve a multivariate linear rational expectations model. J. Econ. Dyn. Control. 2000, 24, 1405–1423. [Google Scholar] [CrossRef]
- Sims, C.A. Solving Linear Rational Expectations Models. Available online: http://sims.princeton.edu/yftp/gensys/LINRE3A.pdf (accessed on 5 May 2022).
- Heijdra Ben, J.; Van Der Ploeg, F. The Foundations of Modern Macroeconomics; University Press: Oxford, UK, 2002; p. 751. [Google Scholar]
- Baluta, V.I.; Shults, D.N. A version of dynamic stochastic general equilibrium model for open economy. Matem. Mod. 2019, 31, 117–131. [Google Scholar] [CrossRef]
- Polbin, A.V. Teoreticheskie i Metodologicheskie Osnovy Dlja Razrabotki Dinamicheskoj Stohasticheskoj Modeli Ob-Shhego Ravnovesija Dlja Rossijskoj Jekonomiki. Ph.D. Thesis, RANEPA, Moscow, Russian, 2015. [Google Scholar]
- Andreyev, M. Adding a fiscal rule into a DSGE model: How much does it change the forecasts? Bank Russ. 2020, 64, 54. [Google Scholar]
- Kreptsev, D.; Seleznev, S. Forecasting for the Russian Economy Using Small-Scale DSGE Models. Money Financ. 2018, 2, 77. [Google Scholar] [CrossRef]
- Novak, A.; Shul’gin, A. Denezhno-Kreditnaja Politika v Jekonomike s Regional’noj Neodnorodnost’ju: Podhody na Osnove Agregirovannoj i Regional’noj Informacii. Available online: https://cbr.ru/Content/Document/File/108035/wp_2003.pdf (accessed on 3 April 2022).
- Chislo Vybyvshikh. Available online: https://www.fedstat.ru/indicator/43513 (accessed on 3 April 2022).
- Srednemesiachnaia Nominal’naia Nachislennaia Zarabotnaia Plata Rabotnikov po Polnomu Krugu Organizatsii po Sub”ektam Rossiiskoi Federatsii s 2019 Goda. Available online: https://rosstat.gov.ru/storage/mediabank/tab2_zpl.xlsx (accessed on 3 April 2022).
- Komarova, A.V.; Kritsyna, E.A. On the proportion human capital in GRP of Russian Regions. Vestn. NGU. Seriia Sotsial’no-Ekon. Nauk. 2012, 12, 5–14. [Google Scholar]
- Zemtsov, S.P.; Smelov, Y.A. Factors of Regional Development in Russia: Geography, Human Capital and Regional Policies. JNEA 2018, 40, 84–108. [Google Scholar] [CrossRef]
- Komarova, A.V.; Pavshok, P.O. Otsenka Vklada Chelovecheskogo Kapitala v Ekonomicheskii Rost Regionov Rossii (na os-nove modeli Menk’iu—Romera—Ueila). Vestn. NGU. Seriia Sotsial’no-Eknomicheskie Nauk. 2007, 7, 191–201. [Google Scholar]
- Elementy Ispol’zovaniia Valovogo Vnutrennego Produkta. Available online: https://rosstat.gov.ru/storage/mediabank/GDP-years-of-use-1995.xls (accessed on 3 April 2022).
- Analiz Tendentsii v Biudzhetno-Nalogovoi Sfere Rossii. Available online: https://www.rea.ru/Documents/%D0%91%D1%8E%D0%B4%D0%B6%D0%B5%D1%82_%D0%B8%D1%82%D0%BE%D0%B3_2020_2.pdf (accessed on 3 April 2022).
Parameter | Value |
---|---|
Discount rate | |
Elasticity of intertemporal substitution of consumption | |
Inverse elasticity of labor supply | |
Labor elasticity of GRP | |
Capital depreciation rate | |
Basic personal income tax rate | |
Basic income tax rate | |
Average share of budget spending on human capital | |
Elasticity of migration by wage difference | |
Elasticity of capital movement with respect to interest arbitrage | |
Share of household consumption in GRP | |
Share of exports in GRP | |
Share of investment in GRP | |
Share of budget expenditures in GRP | |
Share of imports in GRP | |
The share of personal income tax in the regional budget | |
Share of income tax in the regional budget | |
The share of property taxes in the regional budget | |
The ratio of firms’ payments for interest payments and for property taxes | |
Elasticity of consumption and employment with budget expenditures for the human development sectors | |
Elasticity of total factor productivity with respect to budget spending on human development sectors |
y1 | y2 | L1 | L2 | w1 | w2 | i1 | i2 | g1 | g2 | |
---|---|---|---|---|---|---|---|---|---|---|
e_ad | 0.56 | 0.005 | 0.8 | 0.04 | −0.27 | −0.035 | −1.25 | 0.8 | 0.5 | 0.004 |
w_h | −0.27 | 0.09 | −0.6 | 0.125 | 0.3 | −0.04 | −1.3 | −0.3 | −0.22 | 0.082 |
t_inc | 0.05 | 0.035 | −0.15 | 0.05 | 0.1 | −0.015 | −0.8 | 0.12 | 0.36 | 0.03 |
t_П | −0.3 | −0.025 | −0.4 | −0.07 | −0.85 | 0.04 | −1.2 | −0.27 | −0.25 | −0.016 |
t_k | −0.25 | −0.04 | −0.35 | −0.1 | −0.15 | 0.06 | −1.5 | −0.6 | −0.8 | −0.026 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubrovskaya, J.; Shults, D.; Kozonogova, E. Constructing a Region DSGE Model with Institutional Features of Territorial Development. Computation 2022, 10, 105. https://doi.org/10.3390/computation10070105
Dubrovskaya J, Shults D, Kozonogova E. Constructing a Region DSGE Model with Institutional Features of Territorial Development. Computation. 2022; 10(7):105. https://doi.org/10.3390/computation10070105
Chicago/Turabian StyleDubrovskaya, Julia, Dmitriy Shults, and Elena Kozonogova. 2022. "Constructing a Region DSGE Model with Institutional Features of Territorial Development" Computation 10, no. 7: 105. https://doi.org/10.3390/computation10070105
APA StyleDubrovskaya, J., Shults, D., & Kozonogova, E. (2022). Constructing a Region DSGE Model with Institutional Features of Territorial Development. Computation, 10(7), 105. https://doi.org/10.3390/computation10070105