Swarm Robotics: Simulators, Platforms and Applications Review
Abstract
:1. Introduction
2. Swarm Robotics: Definition and Characteristics
- Homogeneity: each robot must have the same design, functionalities and share the same control algorithm [11]. Homogeneity is usually wanted because heterogeneity lowers the degree of redundancy, which may reduce robustness if it is not considered carefully [4]. However, it has become more common to find works that employ a restrained heterogeneous swarm. In these, robots are designed as a small set of different agent types, that can be put together in order to accomplish a task collaboratively [12].
- Large number: the formal definition of a swarm implies having “a large number” of agents, however, a minimum group size is difficult to decide on and justify. For instance, a swarm of 10 to 20 robots may seem enough for laboratory tests, but if they are deployed in an area of several square kilometers, this number may seem insignificant [9].
- Limited capabilities: a key idea in SR systems is to use relatively simple robots. Thereby, robots might not be able to efficiently carry out tasks on their own, but they would be highly efficient by cooperating with others [5]. As mentioned in [9], even though robots must be simple, this does not impose any restrictions on the hardware or software complexity of the robots. The simplicity of individual robots should not be taken in absolute terms, but relative to the task.
- Communication and control schemes: two main approaches can be used to manage communication and control of a robotic system: centralize and decentralize. Centralized schemes have a main entity which collects and synthesizes data from all the agents and, in some occasions, tells them how they should operate on a global level [4]. They have the advantage of offering direct control over each agent and making it easy to predict the overall system behavior. On the other hand, decentralized systems use distributed communication and control mechanisms [4]. Among their advantages are the following: (i) It reduces delays and bottle necks associated with centralized processing; (ii) It reduces failures associated with agent loss; (iii) It naturally exploits parallelism.
3. Simulators for Swarm Algorithms
3.1. Software Examples
3.2. From Simulation to Reality
4. Real-Life Swarm Robotics Platforms
5. Swarm Robotics Applications
5.1. Navigation
5.2. Foraging
5.3. Exploration
5.4. Aggregation
5.5. Other Applications
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beni, G.; Wang, J. Swarm intelligence in cellular robotic systems. In Robots and Biological Systems: Towards a New Bionics? Springer: Berlin/Heidelberg, Germany, 1993; pp. 703–712. [Google Scholar]
- Dorigo, M.; Theraulaz, G.; Trianni, V. Swarm Robotics: Past, Present, and Future [Point of View]. Proc. IEEE 2021, 109, 1152–1165. [Google Scholar] [CrossRef]
- Mavrovouniotis, M.; Li, C.; Yang, S. A survey of swarm intelligence for dynamic optimization: Algorithms and applications. Swarm Evol. Comput. 2017, 33, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Barca, J.C.; Sekercioglu, Y.A. Swarm robotics reviewed. Robotica 2013, 31, 345–359. [Google Scholar] [CrossRef] [Green Version]
- Khaldi, B.; Cherif, F. An overview of swarm robotics: Swarm intelligence applied to multi-robotics. Int. J. Comput. Appl. 2015, 126, 31–37. [Google Scholar] [CrossRef]
- Jose, K.; Pratihar, D.K. Task allocation and collision-free path planning of centralized multi-robots system for industrial plant inspection using heuristic methods. Robot. Auton. Syst. 2016, 80, 34–42. [Google Scholar] [CrossRef]
- Khamis, A.; Hussein, A.; Elmogy, A. Multi-robot task allocation: A review of the state-of-the-art. In Cooperative Robots and Sensor Networks 2015; Springer: Cham, Switzerland, 2015; pp. 31–51. [Google Scholar]
- Senanayake, M.; Senthooran, I.; Barca, J.C.; Chung, H.; Kamruzzaman, J.; Murshed, M. Search and tracking algorithms for swarms of robots: A survey. Robot. Auton. Syst. 2016, 75, 422–434. [Google Scholar] [CrossRef]
- Şahin, E. Swarm robotics: From sources of inspiration to domains of application. In Proceedings of the SAB 2004 International Workshop, Santa Monica, CA, USA, 17 July 2004; pp. 10–20. [Google Scholar]
- Haidegger, T.; Galambos, P.; Rudas, I. Robotics 4.0—Are we there yet? In Proceedings of the 2019 IEEE 23rd International Conference on Intelligent Engineering Systems (INES), Gödöllö, Hungary, 25–27 April 2019. [Google Scholar]
- Bayındır, L. A review of swarm robotics tasks. Neurocomputing 2016, 172, 292–321. [Google Scholar] [CrossRef]
- Hamann, H. Swarm Robotics: A Formal Approach; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Nedjah, N.; Junior, L.S. Review of methodologies and tasks in swarm robotics towards standardization. Swarm Evol. Comput. 2019, 50, 100565. [Google Scholar] [CrossRef]
- Brambilla, M.; Ferrante, E.; Birattari, M.; Dorigo, M. Swarm robotics: A review from the swarm engineering perspective. Swarm Intell. 2013, 7, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Erez, T.; Tassa, Y.; Todorov, E. Simulation tools for model-based robotics: Comparison of bullet, havok, mujoco, ode and physx. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 4397–4404. [Google Scholar]
- Vaughan, R. Massively multi-robot simulation in stage. Swarm Intell. 2008, 2, 189–208. [Google Scholar] [CrossRef]
- Massink, M.; Brambilla, M.; Latella, D.; Dorigo, M.; Birattari, M. Analysing robot swarm decision-making with Bio-PEPA. In Proceedings of the 8th International Conference, ANTS 2012, Brussels, Belgium, 12–14 September 2012; pp. 25–36. [Google Scholar]
- Ciocchetta, F.; Hillston, J. Bio-PEPA: A framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 2009, 410, 3065–3084. [Google Scholar] [CrossRef] [Green Version]
- Balch, T. Behavioral Diversity in Learning Robot Teams; Technical Report; Georgia Institute of Technology: Atlanta, GA, USA, 1998. [Google Scholar]
- Mondada, F.; Pettinaro, G.C.; Guignard, A.; Kwee, I.W.; Floreano, D.; Deneubourg, J.L.; Nolfi, S.; Gambardella, L.M.; Dorigo, M. SWARM-BOT: A new distributed robotic concept. Auton. Robots 2004, 17, 193–221. [Google Scholar] [CrossRef]
- Smith, R. Open Dynamics Engine, V0.5 User Guide. 2005. Available online: http://ode.org/ode-latest-userguide.pdf (accessed on 11 May 2022).
- Hoffman, E.M.; Traversaro, S.; Rocchi, A.; Ferrati, M.; Settimi, A.; Romano, F.; Natale, L.; Bicchi, A.; Nori, F.; Tsagarakis, N.G. Yarp based plugins for gazebo simulator. In Proceedings of the International Workshop on Modelling and Simulation for Autonomous Systems, Rome, Italy, 5–6 May 2014; pp. 333–346. [Google Scholar]
- Michel, O. Cyberbotics Ltd. Webots™: Professional mobile robot simulation. Int. J. Adv. Robot. Syst. 2004, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J. Microsoft robotics studio: A technical introduction. IEEE Robot. Autom. Mag. 2007, 14, 82–87. [Google Scholar] [CrossRef]
- Carpin, S.; Lewis, M.; Wang, J.; Balakirsky, S.; Scrapper, C. USARSim: A robot simulator for research and education. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 1400–1405. [Google Scholar]
- Pinciroli, C.; Trianni, V.; O’Grady, R.; Pini, G.; Brutschy, A.; Brambilla, M.; Mathews, N.; Ferrante, E.; Di Caro, G.; Ducatelle, F.; et al. ARGoS: A modular, multi-engine simulator for heterogeneous swarm robotics. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 5027–5034. [Google Scholar]
- Rohmer, E.; Singh, S.P.; Freese, M. V-REP: A versatile and scalable robot simulation framework. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1321–1326. [Google Scholar]
- Francesca, G.; Birattari, M. Automatic design of robot swarms: Achievements and challenges. Front. Robot. AI 2016, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Gonzalez, P.; Oprea, S.; Garcia-Garcia, A.; Jover-Alvarez, A.; Orts-Escolano, S.; Garcia-Rodriguez, J. Unrealrox: An extremely photorealistic virtual reality environment for robotics simulations and synthetic data generation. Virtual Real. 2019, 24, 271–288. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Saxena, D.; Kumari, S.; Kaur, D. Issues and applications of swarm robotics. Int. J. Res. Eng. Technol. Sci. 2016, 6, 1–5. [Google Scholar]
- Schranz, M.; Umlauft, M.; Sende, M.; Elmenreich, W. Swarm robotic behaviors and current applications. Front. Robot. AI 2020, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Hoenig, W.; Milanes, C.; Scaria, L.; Phan, T.; Bolas, M.; Ayanian, N. Mixed reality for robotics. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 5382–5387. [Google Scholar]
- Mondada, F.; Bonani, M.; Raemy, X.; Pugh, J.; Cianci, C.; Klaptocz, A.; Magnenat, S.; Zufferey, J.C.; Floreano, D.; Martinoli, A. The e-puck, a robot designed for education in engineering. In Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, Castelo Branco, Portugal, 7 May 2009; Volume 1, pp. 59–65. [Google Scholar]
- Chen, J.; Gauci, M.; Price, M.J.; Groß, R. Segregation in swarms of e-puck robots based on the brazil nut effect. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, Valencia, Spain, 4–8 June 2012; Volume 1, pp. 163–170. [Google Scholar]
- Pitonakova, L.; Winfield, A.; Crowder, R. Recruitment near worksites facilitates robustness of foraging E-puck swarms to global positioning noise. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4276–4281. [Google Scholar]
- Products—RoadNarrows Robotics. Available online: https://roadnarrows-robotics.github.io/ (accessed on 11 May 2022).
- Peralta, E.; Fabregas, E.; Farias, G.; Vargas, H.; Dormido, S. Development of a Khepera IV Library for the V-REP Simulator. IFAC-PapersOnLine 2016, 49, 81–86. [Google Scholar] [CrossRef]
- Varadharajan, V.S.; St-Onge, D.; Adams, B.; Beltrame, G. SOUL: Data sharing for robot swarms. Auton. Robots 2019, 44, 377–394. [Google Scholar] [CrossRef]
- Soares, J.M.; Navarro, I.; Martinoli, A. The Khepera IV mobile robot: Performance evaluation, sensory data and software toolbox. In Proceedings of the Robot 2015: Second Iberian Robotics Conference, Lisbon, Portugal, 19–21 November 2015; pp. 767–781. [Google Scholar]
- Pinciroli, C.; Talamali, M.S.; Reina, A.; Marshall, J.A.; Trianni, V. Simulating Kilobots within ARGoS: Models and experimental validation. In Proceedings of the International Conference on Swarm Intelligence, Shanghai, China, 17–22 June 2018; pp. 176–187. [Google Scholar]
- Rubenstein, M.; Ahler, C.; Hoff, N.; Cabrera, A.; Nagpal, R. Kilobot: A low cost robot with scalable operations designed for collective behaviors. Robot. Auton. Syst. 2014, 62, 966–975. [Google Scholar] [CrossRef]
- Valentini, G.; Ferrante, E.; Hamann, H.; Dorigo, M. Collective decision with 100 Kilobots: Speed versus accuracy in binary discrimination problems. Auton. Agents Multi-Agent Syst. 2016, 30, 553–580. [Google Scholar] [CrossRef] [Green Version]
- Reina, A.; Cope, A.J.; Nikolaidis, E.; Marshall, J.A.; Sabo, C. Ark: Augmented reality for kilobots. IEEE Robot. Autom. Lett. 2017, 2, 1755–1761. [Google Scholar] [CrossRef] [Green Version]
- Dimidov, C.; Oriolo, G.; Trianni, V. Random walks in swarm robotics: An experiment with kilobots. In Proceedings of the International Conference on Swarm Intelligence, Bali, Indonesia, 25–30 June 2016; pp. 185–196. [Google Scholar]
- Dorigo, M.; Floreano, D.; Gambardella, L.M.; Mondada, F.; Nolfi, S.; Baaboura, T.; Birattari, M.; Bonani, M.; Brambilla, M.; Brutschy, A.; et al. Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. Mag. 2013, 20, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Arvin, F.; Murray, J.; Zhang, C.; Yue, S. Colias: An autonomous micro robot for swarm robotic applications. Int. J. Adv. Robot. Syst. 2014, 11, 113. [Google Scholar] [CrossRef]
- Arvin, F.; Murray, J.C.; Shi, L.; Zhang, C.; Yue, S. Development of an autonomous micro robot for swarm robotics. In Proceedings of the 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, China, 3–6 August 2014; pp. 635–640. [Google Scholar]
- Arvin, F.; Xiong, C.; Yue, S. Colias-φ: An autonomous micro robot for artificial pheromone communication. Int. J. Mech. Eng. Robot. Res. 2015, 4, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Arvin, F.; Espinosa, J.; Bird, B.; West, A.; Watson, S.; Lennox, B. Mona: An affordable open-source mobile robot for education and research. J. Intell. Robot. Syst. 2019, 94, 761–775. [Google Scholar] [CrossRef] [Green Version]
- Arvin, F.; Mendoza, J.L.E.; Bird, B.; West, A.; Watson, S.; Lennox, B. Mona: An affordable mobile robot for swarm robotic applications. In Proceedings of the UK-RAS Conference on Robotics and Autonomous Systems, Coimbra, Portugal, 26–28 April 2017; pp. 49–52. [Google Scholar]
- Hilder, J.; Horsfield, A.; Millard, A.G.; Timmis, J. The Psi swarm: A low-cost robotics platform and its use in an education setting. In Proceedings of the Annual Conference Towards Autonomous Robotic Systems, Sheffield, UK, 26 June–1 July 2016; pp. 158–164. [Google Scholar]
- Millard, A.G.; Redpath, R.; Jewers, A.M.; Arndt, C.; Joyce, R.; Hilder, J.A.; McDaid, L.J.; Halliday, D.M. ARDebug: An augmented reality tool for analysing and debugging swarm robotic systems. Front. Robot. AI 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Pickem, D.; Glotfelter, P.; Wang, L.; Mote, M.; Ames, A.; Feron, E.; Egerstedt, M. The robotarium: A remotely accessible swarm robotics research testbed. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1699–1706. [Google Scholar]
- Pickem, D.; Lee, M.; Egerstedt, M. The GRITSBot in its natural habitat-a multi-robot testbed. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 4062–4067. [Google Scholar]
- Riedo, F.; Chevalier, M.; Magnenat, S.; Mondada, F. Thymio II, a robot that grows wiser with children. In Proceedings of the 2013 IEEE Workshop on Advanced Robotics and its Social Impacts, Tokyo, Japan, 7–9 November 2013; pp. 187–193. [Google Scholar]
- Vitanza, A.; Rossetti, P.; Mondada, F.; Trianni, V. Robot swarms as an educational tool: The Thymio’s way. Int. J. Adv. Robot. Syst. 2019, 16, 1729881418825186. [Google Scholar] [CrossRef] [Green Version]
- Mondada, F.; Bonani, M.; Riedo, F.; Briod, M.; Pereyre, L.; Rétornaz, P.; Magnenat, S. Bringing robotics to formal education: The thymio open-source hardware robot. IEEE Robot. Autom. Mag. 2017, 24, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Wahby, M.; Petzold, J.; Eschke, C.; Schmickl, T.; Hamann, H. Collective change detection: Adaptivity to dynamic swarm densities and light conditions in robot swarms. In Proceedings of the 2018 Conference On Artificial Life: A Hybrid of the European Conference on Artificial Life (ECAL) and the International Conference on the Synthesis and Simulation of Living Systems (ALIFE), Newcastle, UK, 29 July–2 August 2019; pp. 642–649. [Google Scholar]
- Guzzi, J.; Giusti, A.; Di Caro, G.A.; Gambardella, L.M. Mighty thymio for university-level educational robotics. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Thymio Educational Robot—Roboshop. Available online: https://www.robotshop.com/en/thymio-educational-robot.html (accessed on 11 May 2022).
- Cardona, G.A.; Calderon, J.M. Robot swarm navigation and victim detection using rendezvous consensus in search and rescue operations. Appl. Sci. 2019, 9, 1702. [Google Scholar] [CrossRef] [Green Version]
- Junior, L.S.; Nedjah, N. Efficient strategy for collective navigation control in swarm robotics. Procedia Comput. Sci. 2016, 80, 814–823. [Google Scholar] [CrossRef] [Green Version]
- Talamali, M.S.; Bose, T.; Haire, M.; Xu, X.; Marshall, J.A.; Reina, A. Sophisticated collective foraging with minimalist agents: A swarm robotics test. Swarm Intell. 2020, 14, 25–56. [Google Scholar] [CrossRef] [Green Version]
- Castello, E.; Yamamoto, T.; Dalla Libera, F.; Liu, W.; Winfield, A.F.; Nakamura, Y.; Ishiguro, H. Adaptive foraging for simulated and real robotic swarms: The dynamical response threshold approach. Swarm Intell. 2016, 10, 1–31. [Google Scholar] [CrossRef]
- Duarte, M.; Gomes, J.; Costa, V.; Rodrigues, T.; Silva, F.; Lobo, V.; Marques, M.M.; Oliveira, S.M.; Christensen, A.L. Application of swarm robotics systems to marine environmental monitoring. In Proceedings of the OCEANS 2016—Shanghai, Shanghai, China, 10–13 April 2016; pp. 1–8. [Google Scholar]
- Solis-Ortega, R.; Calderon-Arce, C. Multiobjective problem to find paths through swarm robotics. In Proceedings of the 2019 3rd International Conference on Automation, Control and Robots, Prague, Czech Republic, 11–13 October 2019; pp. 12–21. [Google Scholar]
- Amjadi, A.S.; Raoufi, M.; Turgut, A.E.; Broughton, G.; Krajník, T.; Arvin, F. Cooperative pollution source localization and cleanup with a bio-inspired swarm robot aggregation. arXiv 2019, arXiv:1907.09585. [Google Scholar]
- Ramroop, S.; Arvin, F.; Watson, S.; Carrasco-Gomez, J.; Lennox, B. A bio-inspired aggregation with robot swarm using real and simulated mobile robots. In Proceedings of the Annual Conference Towards Autonomous Robotic Systems, Bristol, UK, 25–27 July 2018; pp. 317–329. [Google Scholar]
- Cianci, C.M.; Raemy, X.; Pugh, J.; Martinoli, A. Communication in a swarm of miniature robots: The e-puck as an educational tool for swarm robotics. In Proceedings of the International Workshop on Swarm Robotics, Rome, Italy, 30 September–1 October 2006; pp. 103–115. [Google Scholar]
- Reina, A.; Bose, T.; Trianni, V.; Marshall, J.A. Effects of spatiality on value-sensitive decisions made by robot swarms. In Distributed Autonomous Robotic Systems; Springer: Cham, Switzerland, 2018; pp. 461–473. [Google Scholar]
Software/Feature | Last Update | Free | Open-Source | Linux | MacOS | Windows | Swarm | Source (Accessed: 11 May 2022) |
---|---|---|---|---|---|---|---|---|
Stage | 2020 | ✓ | ✓ | ✓ | ✓ | ✓ | Repository: https://github.com/rtv/Stage | |
Bio-PEPA | 2010 | ✓ | ✓ | ✓ | ✓ | ✓ | Website: https://homepages.inf.ed.ac.uk/jeh/Bio-PEPA/biopepa.html | |
TeamBots | 2000 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | Webside: https://www.cs.cmu.edu/~trb/TeamBots/ |
Swarm-bots | 2014 | ✓ | ✓ | ✓ | Webside: https://www.swarm-bots.org/ | |||
ODE | 2022 | ✓ | ✓ | ✓ | ✓ | Webside: https://www.ode.org/ | ||
Gazebo | 2019 | ✓ | ✓ | ✓ | ✓ | ✓ | Webside: http://gazebosim.org/ | |
Webots | 2021 | ✓ | ✓ | ✓ | ✓ | ✓ | Webside: https://cyberbotics.com/ | |
MSRS | 2015 | ✓ | ✓ | Not available | ||||
USARSim | 2013 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | Repository: https://sourceforge.net/projects/usarsim/ |
ARGoS | 2022 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | Webside: https://www.argos-sim.info/ |
CoppeliaSim | 2022 | ✓ | ✓ | ✓ | ✓ | ✓ | Webside: https://www.coppeliarobotics.com/ |
Robot/Feature | Introduction Date | Developer | Commercially Available | Cost |
---|---|---|---|---|
E-puck | 2004 | École Polytechnique Fédérale de Lausanne (EPFL) | ✓ | USD 1000 |
Khepera IV | 2015 | K-Team (EPFL spin-off) | ✓ | USD 3200 |
Kilobot | 2010 | Harvard University | ✓ | USD 130 |
Swarmanoid: footbot | 2011 | Future and Emerging Technologies (FET-OPEN) project | - | |
Colias | 2014 | University of Lincoln | USD 32 (GBP 25) | |
Mona | 2017 | University of Manchester | USD 129 (GBP 100) | |
Psi Swarm | 2016 | University of York | - | |
GRITSBot | 2015 | Georgia Tech | USD 50 (parts) | |
Thymio | 2011 | Mobsya (EPFL spin-off) | ✓ | USD 173 |
Robot/Feature | Sensors | Communication | Controller | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Differential Drive | Encoders | Infrared (IR) | Ultrasonic | Accelerom./Gyro | Camera | Microphone | IR Short-range | Bluetooth | WiFi | Radio Frequency | Other | Microcontroller(s) | Microprocessor | |
E-puck | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Khepera IV | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Kilobot | ✓ | ✓ | ✓ | |||||||||||
Swarmanoid | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Colias | ✓ | ✓ | ✓ | ✓ | ||||||||||
Mona | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Psi Swarm | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
GRITSBot | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Thymio | ✓ | ✓ | ✓ | ✓ | ✓ |
Application | Real-Life Swarm | Swarm Simulation | ||
---|---|---|---|---|
Implemented | Platforms | Implemented | Software | |
Navigation | ✓ | Matlab V-Rep | ||
Foraging | ✓ | E-pucksKilobots | ✓ | ArGoSARK Stage |
Exploration | ✓ | Unnamed marine robot | ✓ | Processing |
Aggregation | ✓ | Colias Mona | ✓ | WebotsPlayer/Stage |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderón-Arce, C.; Brenes-Torres, J.C.; Solis-Ortega, R. Swarm Robotics: Simulators, Platforms and Applications Review. Computation 2022, 10, 80. https://doi.org/10.3390/computation10060080
Calderón-Arce C, Brenes-Torres JC, Solis-Ortega R. Swarm Robotics: Simulators, Platforms and Applications Review. Computation. 2022; 10(6):80. https://doi.org/10.3390/computation10060080
Chicago/Turabian StyleCalderón-Arce, Cindy, Juan Carlos Brenes-Torres, and Rebeca Solis-Ortega. 2022. "Swarm Robotics: Simulators, Platforms and Applications Review" Computation 10, no. 6: 80. https://doi.org/10.3390/computation10060080
APA StyleCalderón-Arce, C., Brenes-Torres, J. C., & Solis-Ortega, R. (2022). Swarm Robotics: Simulators, Platforms and Applications Review. Computation, 10(6), 80. https://doi.org/10.3390/computation10060080