A Comprehensive DFT Investigation of the Adsorption of Polycyclic Aromatic Hydrocarbons onto Graphene
Abstract
:1. Introduction
2. Method
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches. Front. Microbiol. 2020, 11, 2675. [Google Scholar] [CrossRef] [PubMed]
- Manzetti, S. Polycyclic Aromatic Hydrocarbons in the Environment: Environmental Fate and Transformation. Polycycl. Aromat. Compd. 2013, 33, 311–330. [Google Scholar] [CrossRef]
- Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Mahgoub, H.A. Nanoparticles used for extraction of polycyclic aromatic hydrocarbons. J. Chem. 2019, 2019, 4816849. [Google Scholar] [CrossRef]
- García-Sánchez, M.; Košnář, Z.; Mercl, F.; Aranda, E.; Tlustoš, P. A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicol. Environ. Saf. 2018, 147, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Cofield, N.; Schwab, A.P.; Banks, M.K. Phytoremediation of polycyclic aromatic hydrocarbons in soil: Part I. Dissipation of target contaminants. Int. J. Phytoremediation 2007, 9, 355–370. [Google Scholar] [CrossRef]
- Jeelani, N.; Yang, W.; Xu, L.; Qiao, Y.; An, S.; Leng, X. Phytoremediation potential of Acorus calamus in soils co-contaminated with cadmium and polycyclic aromatic hydrocarbons. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Guo, G.; Liu, C.; Tian, F.; Ding, K.; Wang, H.; Zhang, C.; Yang, F.; Xu, J. Bioaugmentation treatment of polycyclic aromatic hydrocarbon-polluted soil in a slurry bioreactor with a bacterial consortium and hydroxypropyl-β-cyclodextrin. Environ. Technol. 2021, 1–8. [Google Scholar] [CrossRef]
- Forján, R.; Lores, I.; Sierra, C.; Baragaño, D.; Gallego, J.L.R.; Peláez, A.I. Bioaugmentation Treatment of a PAH-Polluted Soil in a Slurry Bioreactor. Appl. Sci. 2020, 10, 2837. [Google Scholar] [CrossRef] [Green Version]
- Alcántara, M.T.; Gómez, J.; Pazos, M.; Sanromán, M.A. Electrokinetic remediation of PAH mixtures from kaolin. J. Hazard. Mater. 2010, 179, 1156–1160. [Google Scholar] [CrossRef]
- Rorat, A.; Wloka, D.; Grobelak, A.; Grosser, A.; Sosnecka, A.; Milczarek, M.; Jelonek, P.; Vandenbulcke, F.; Kacprzak, M. Vermiremediation of polycyclic aromatic hydrocarbons and heavy metals in sewage sludge composting process. J. Environ. Manag. 2017, 187, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, S.; Thavamani, P.; Venkateswarlu, K.; Lee, Y.B.; Naidu, R.; Megharaj, M. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere 2017, 168, 944–968. [Google Scholar] [CrossRef] [PubMed]
- Satouh, S.; Martín, J.; Del Mar Orta, M.; Medina-Carrasco, S.; Messikh, N.; Bougdah, N.; Santos, J.L.; Aparicio, I.; Alonso, E. Adsorption of polycyclic aromatic hydrocarbons by natural, synthetic and modified clays. Environments 2021, 8, 124. [Google Scholar] [CrossRef]
- Lamichhane, S.; Bal Krishna, K.C.; Sarukkalige, R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere 2016, 148, 336–353. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ou, P.; Wei, Y.; Zhang, X.; Song, J. Polycyclic aromatic hydrocarbons adsorption onto graphene: A DFT and AIMD Study. Materials 2018, 11, 726. [Google Scholar] [CrossRef] [Green Version]
- Perreault, F.; Fonseca De Faria, A.; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015, 44, 5861–5896. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, S.; Zhao, G.; Wang, Q.; Wang, X. Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides. Chem. Asian J. 2013, 8, 2755–2761. [Google Scholar] [CrossRef]
- Bi, H.; Xie, X.; Yin, K.; Zhou, Y.; Wan, S.; He, L.; Xu, F.; Banhart, F.; Sun, L.; Ruoff, R.S. Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents. Adv. Funct. Mater. 2012, 22, 4421–4425. [Google Scholar] [CrossRef]
- Zhao, G.; Jiang, L.; He, Y.; Li, J.; Dong, H.; Wang, X.; Hu, W. Sulfonated Graphene for Persistent Aromatic Pollutant Management. Adv. Mater. 2011, 23, 3959–3963. [Google Scholar] [CrossRef]
- Buragohain, M.; Pathak, A.; Sakon, I.; Onaka, T. DFT study on interstellar PAH molecules with aliphatic side groups. Astrophys. J. 2020, 892, 11. [Google Scholar] [CrossRef] [Green Version]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Andzelm, J.; King-Smith, R.D.; Fitzgerald, G. Geometry optimization of solids using delocalized internal coordinates. Chem. Phys. Lett. 2001, 335, 321–326. [Google Scholar] [CrossRef]
- Azizi, E.; Tehrani, Z.A.; Jamshidi, Z. Interactions of small gold clusters, Aun (n=1-3), with graphyne: Theoretical investigation. J. Mol. Graph. Model. 2014, 54, 80–89. [Google Scholar] [CrossRef]
- Hu, L.; Hu, X.; Wu, X.; Du, C.; Dai, Y.; Deng, J. Density functional calculation of transition metal adatom adsorption on graphene. Phys. B Condens. Matter 2010, 405, 3337–3341. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. Performance of the M11 and M11-L density functionals for calculations of electronic excitation energies by adiabatic time-dependent density functional theory. Phys. Chem. Chem. Phys. 2012, 14, 11363–11370. [Google Scholar] [CrossRef] [PubMed]
- Molhi, A.; Hsissou, R.; Damej, M.; Berisha, A.; Bamaarouf, M.; Seydou, M.; Benmessaoud, M.; El Hajjaji, S. Performance of two epoxy compounds against corrosion of C38 steel in 1 M HCl: Electrochemical, thermodynamic and theoretical assessment. Int. J. Corros. Scale Inhib. 2021, 10, 812–837. [Google Scholar] [CrossRef]
- Berisha, A. Experimental, Monte Carlo and molecular dynamic study on corrosion inhibition of mild steel by pyridine derivatives in aqueous perchloric acid. Electrochem 2020, 1, 188–199. [Google Scholar] [CrossRef]
- Berisha, A. The influence of the grafted aryl groups on the solvation properties of the graphyne and graphdiyne- A MD study. Open Chem. 2019, 17, 703–710. [Google Scholar] [CrossRef]
- Berisha, A. First principles details into the grafting of aryl radicals onto the free-standing and borophene/Ag (1 1 1) surfaces. Chem. Phys. 2021, 544, 111124. [Google Scholar] [CrossRef]
- Berisha, A. Ab inito exploration of nanocars as potential corrosion inhibitors. Comput. Theor. Chem. 2021, 1201, 113258. [Google Scholar] [CrossRef]
- Phal, S.; Nguyễn, H.; Berisha, A.; Tesfalidet, S. In situ Bi/carboxyphenyl-modified glassy carbon electrode as a sensor platform for detection of Cd2+ and Pb2+ using square wave anodic stripping voltammetry. Sens. Bio-Sens. Res. 2021, 34, 100455. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Pino-Rios, R.; Chigo-Anota, E.; Shakerzadeh, E.; Cárdenas-Jirón, G. B12N12 cluster as a collector of noble gases: A quantum chemical study. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 115, 113697. [Google Scholar] [CrossRef]
- Tkatchenko, A.; Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005. [Google Scholar] [CrossRef] [Green Version]
- Jessima, S.J.H.M.; Berisha, A.; Srikandan, S.S.; Subhashini, S. Preparation, characterization, and evaluation of corrosion inhibition efficiency of sodium lauryl sulfate modified chitosan for mild steel in the acid pickling process. J. Mol. Liq. 2020, 320, 114382. [Google Scholar] [CrossRef]
- Dagdag, O.; Berisha, A.; Safi, Z.; Hamed, O.; Jodeh, S.; Verma, C.; Ebenso, E.E.E.; El Harfi, A. DGEBA-polyaminoamide as effective anti-corrosive material for 15CDV6 steel in NaCl medium: Computational and experimental studies. J. Appl. Polym. Sci. 2020, 137, 48402. [Google Scholar] [CrossRef]
- Hsissou, R.; Dagdag, O.; Abbout, S.; Benhiba, F.; Berradi, M.; El Bouchti, M.; Berisha, A.; Hajjaji, N.; Elharfi, A. Novel derivative epoxy resin TGETET as a corrosion inhibition of E24 carbon steel in 1.0 M HCl solution. Experimental and computational (DFT and MD simulations) methods. J. Mol. Liq. 2019, 284, 182–192. [Google Scholar] [CrossRef]
- Uppalapati, P.K.; Berisha, A.; Velmurugan, K.; Nandhakumar, R.; Khosla, A.; Liang, T. Salen type additives as corrosion mitigator for Ni–W alloys: Detailed electronic/atomic-scale computational illustration. Int. J. Quantum Chem. 2021, 121, e26600. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Rajesh, C.; Majumder, C.; Mizuseki, H.; Kawazoe, Y. A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube. J. Chem. Phys. 2009, 130, 124911. [Google Scholar] [CrossRef] [PubMed]
- Berisha, A. Interactions between the aryldiazonium cations and graphene oxide: A DFT study. J. Chem. 2019, 2019, 5126071. [Google Scholar] [CrossRef]
- Mehmeti, V.; Halili, J.; Berisha, A. Which is better for Lindane pesticide adsorption, graphene or graphene oxide? An experimental and DFT study. J. Mol. Liq. 2022, 347, 118345. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Moe, Y.N. On the performance of local density approximation in describing the adsorption of electron donating/accepting molecules on graphene. Chem. Phys. 2012, 406, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhang, Y.; Wang, Y.B. Noncovalent π⋅⋅⋅π interaction between graphene and aromatic molecule: Structure, energy, and nature. J. Chem. Phys. 2014, 140, 094302. [Google Scholar] [CrossRef]
- Rapacioli, M.; Tarrat, N. Periodic DFTB for supported clusters: Implementation and application on benzene dimers deposited on graphene. Computation 2022, 10, 39. [Google Scholar] [CrossRef]
- Yu, Y.X. A dispersion-corrected DFT study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h-BN. J. Mater. Chem. A 2014, 2, 8910–8917. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALogP and ClogP methods. J. Phys. Chem. 1998, 102, 3762–3772. [Google Scholar] [CrossRef]
- Yu, B.; Ren, H.; Piao, X. Towards adsorptive enrichment of flavonoids from honey using h-BN monolayer. ChemPhysChem 2022, 23, e202100828. [Google Scholar] [CrossRef]
Correlation | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D: Molecular area (vdW area) (Spatial Descriptors) | X1 | 1 | 0.994 | 0.835 | 0.991 | 0.989 | 0.946 | 0.553 | 0.999 | 0.557 | 0.984 | 0.976 | 0.966 | 0.943 | 0.948 | −0.965 |
E: Molecular volume (vdW volume) (Spatial Descriptors) | X2 | 0.994 | 1 | 0.881 | 0.998 | 0.998 | 0.908 | 0.464 | 0.997 | 0.468 | 0.998 | 0.994 | 0.988 | 0.973 | 0.976 | −0.979 |
F: Molecular density (Spatial Descriptors) | X3 | 0.835 | 0.881 | 1 | 0.884 | 0.888 | 0.614 | 0.016 | 0.843 | 0.023 | 0.906 | 0.920 | 0.934 | 0.954 | 0.953 | −0.933 |
G: AlogP (Fast Descriptors) | X4 | 0.991 | 0.998 | 0.884 | 1 | 1.000 | 0.902 | 0.452 | 0.995 | 0.455 | 0.997 | 0.994 | 0.989 | 0.975 | 0.977 | −0.972 |
H: AlogP98 (Fast Descriptors) | X5 | 0.989 | 0.998 | 0.888 | 1.000 | 1 | 0.897 | 0.442 | 0.993 | 0.445 | 0.998 | 0.995 | 0.990 | 0.977 | 0.979 | −0.973 |
P: Kappa-2 (Fast Descriptors) | X6 | 0.946 | 0.908 | 0.614 | 0.902 | 0.897 | 1 | 0.792 | 0.938 | 0.794 | 0.878 | 0.858 | 0.834 | 0.788 | 0.797 | −0.837 |
Q: Kappa-3 (Fast Descriptors) | X7 | 0.553 | 0.464 | 0.016 | 0.452 | 0.442 | 0.792 | 1 | 0.532 | 1.000 | 0.403 | 0.366 | 0.324 | 0.249 | 0.264 | −0.351 |
R: Kappa-1 (alpha modified) (Fast Descriptors) | X8 | 0.999 | 0.997 | 0.843 | 0.995 | 0.993 | 0.938 | 0.532 | 1 | 0.536 | 0.989 | 0.983 | 0.973 | 0.952 | 0.956 | −0.965 |
T: Kappa-3 (alpha modified) (Fast Descriptors) | X9 | 0.557 | 0.468 | 0.023 | 0.455 | 0.445 | 0.794 | 1.000 | 0.536 | 1 | 0.407 | 0.370 | 0.328 | 0.253 | 0.268 | −0.357 |
AA: Chi (0) (Fast Descriptors) | X10 | 0.984 | 0.998 | 0.906 | 0.997 | 0.998 | 0.878 | 0.403 | 0.989 | 0.407 | 1 | 0.999 | 0.996 | 0.987 | 0.989 | −0.982 |
AB: Chi (1) (Fast Descriptors) | X11 | 0.976 | 0.994 | 0.920 | 0.994 | 0.995 | 0.858 | 0.366 | 0.983 | 0.370 | 0.999 | 1 | 0.999 | 0.992 | 0.994 | −0.982 |
AC: Chi (2) (Fast Descriptors) | X12 | 0.966 | 0.988 | 0.934 | 0.989 | 0.990 | 0.834 | 0.324 | 0.973 | 0.328 | 0.996 | 0.999 | 1 | 0.997 | 0.998 | −0.982 |
AD: Chi (3): path (Fast Descriptors) | X13 | 0.943 | 0.973 | 0.954 | 0.975 | 0.977 | 0.788 | 0.249 | 0.952 | 0.253 | 0.987 | 0.992 | 0.997 | 1 | 1.000 | −0.975 |
AE: Chi (3): cluster (Fast Descriptors) | X14 | 0.948 | 0.976 | 0.953 | 0.977 | 0.979 | 0.797 | 0.264 | 0.956 | 0.268 | 0.989 | 0.994 | 0.998 | 1.000 | 1 | −0.981 |
Eads. (kJ/mol) | Y | −0.965 | −0.979 | −0.933 | −0.972 | −0.973 | −0.837 | −0.351 | −0.965 | −0.357 | −0.982 | −0.982 | −0.982 | −0.975 | −0.981 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehmeti, V.; Sadiku, M. A Comprehensive DFT Investigation of the Adsorption of Polycyclic Aromatic Hydrocarbons onto Graphene. Computation 2022, 10, 68. https://doi.org/10.3390/computation10050068
Mehmeti V, Sadiku M. A Comprehensive DFT Investigation of the Adsorption of Polycyclic Aromatic Hydrocarbons onto Graphene. Computation. 2022; 10(5):68. https://doi.org/10.3390/computation10050068
Chicago/Turabian StyleMehmeti, Valbonë, and Makfire Sadiku. 2022. "A Comprehensive DFT Investigation of the Adsorption of Polycyclic Aromatic Hydrocarbons onto Graphene" Computation 10, no. 5: 68. https://doi.org/10.3390/computation10050068
APA StyleMehmeti, V., & Sadiku, M. (2022). A Comprehensive DFT Investigation of the Adsorption of Polycyclic Aromatic Hydrocarbons onto Graphene. Computation, 10(5), 68. https://doi.org/10.3390/computation10050068