Development of Raspberry Pi 4 B and 3 B+ Micro-Kubernetes Cluster and IoT System for Mosquito Research Applications
Abstract
:1. Introduction
2. Proposed Method
2.1. Iot System Architecture
2.2. MicroK8s Cluster Architecture
2.3. Remote Data Station
2.4. MicroK8s Cluster and IoT System Implementation
3. Measurements
3.1. Microclimate Data Measurements
3.2. Ping Measurements between the Master Node and the Worker Nodes in the Cluster
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | Application Programming Interfaces |
CDC | Centers for Disease Control and Prevention |
CPU | Central Processing Unit |
GPS | Global Positioning System |
HTTP | Hypertext Transfer Protocol |
ID | Light-Emitting Diode |
IoT | Internet of Things |
JSON | JavaScript Object Notation |
K8s | Kubernetes |
LED | Light-Emitting Diode |
LTS | Long Term Support |
MicroK8s | Micro-Kubernetes |
MQTT | MQ Telemetry Transport |
PCB | Printed Circuit Board |
RDS | Remote Data Station |
RGB | Red, Green, and Blue |
RPi | Raspberry Pi |
Std. Dev. | Standard Deviation |
URL | Uniform Resource Locator |
WU | Weather Underground |
References
- Ronca, S.E.; Ruff, J.C.; Murray, K.O. A 20-year historical review of West Nile virus since its initial emergence in North America: Has West Nile virus become a neglected tropical disease. PLoS Neglected Trop. Dis. 2021, 15, e0009190. [Google Scholar] [CrossRef] [PubMed]
- Gatton, M.; Chitnis, N.; Churcher, T.; Donnelly, M.; Ghani, A.; Godfray, C.; Gould, F.; Hastings, I.; Marshall, J.; Ranson, H.; et al. The Important of Mosquito Behavioral adaptations to Malaria Control in Africa. Int. J. Org. Evol. 2013, 67, 1218–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roundy, C.M.; Azar, S.R.; Rossi, S.L.; Huang, J.H.; Leal, G.; Yun, R.; Fernandez-Salas, I.; Vitek, C.J.; Paploski, I.A.; Kitron, U.; et al. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission. Emerg Infect Dis. 2017, 23, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Morton, C.; Liu, Q. Climate change and mosquito-borne diseases in China: A review. Glob. Health 2013, 9, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Neglected Trop. Dis. 2019, 13, e0007213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pley, C.; Evans, M.; Lowe, R.; Montgomery, H.; Yacoub, S. Digital and technological innovation in vector-borne disease surveillance to predict, detect, and control climate-driven outbreaks. Lancet Planet. Health 2021, 5, e739–e745. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.K.; Vincent, G.; Hildreth, M.B.; Kightlinger, L.; Carlson, C.; Wimberly, M.C. Integrating Environmental Monitoring and Mosquito Surveillance to Predict Vector-borne Disease: Prospective Forecasts of a West Nile Virus Outbreak. PLoS Curr. 2017, 9, 2157–3999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balatamoghna, B.; Jaganath, A.; Vaideeshwaran, S.; Subramanian, A.; Suganthi, K. Integrated balancing approach for hosting services with optimal efficiency - Self Hosting with Docker. Mater. Today Proc. 2022, 62, 4612–4619. [Google Scholar] [CrossRef]
- Shah, J.; Dubaria, D. Building Modern Clouds: Using Docker, Kubernetes Google Cloud Platform. In Proceedings of the 2019 IEEE 9th Annual 261 Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 0184–0189. [Google Scholar]
- Containers, VMs, Kubernetes and VMware. Available online: http://googlecloudplatform.blogspot.com/2014/08/containers-vms-kubernetes-and-vmware.html (accessed on 21 September 2022).
- Micheli, P.; Johnson, M.; Godsell, J. Editorial How the Covid-19 pandemic has affected, and will affect, operations and supply chain management research and practice. Emerald Publ. Ltd. 2021, 41, 773–780. [Google Scholar] [CrossRef]
- Nakamura, K.; Manzoni, P.; Redondi, A.; Longo, E.; Zennaro, M.; Cano, J.; Calafate, C. A LoRa-based protocol for connecting IoT edge computing nodes to provide small-data-based services. Digit. Commun. Netw. 2022, 8, 257–266. [Google Scholar] [CrossRef]
- Khazaei, H.; Bannazadeh, H.; Leon-Garcia, A. SAVI-IoT: A Self-Managing Containerized IoT Platform. In Proceedings of the 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud), Prague, Czech Republic, 21–23 August 2017; pp. 227–234. [Google Scholar]
- Hur, B.; Myles, K.; Adelman, Z.; Erraguntla, M.; Lawley, M.; Kim, E.; Burgi, J.; Price, K.; Fritz, K.; Stalcup, D.; et al. IoT Environmental-monitoring System Development for Mosquito Research Through Capstone Project Integration in Engineering Technology. In Proceedings of the 2021 ASEE Virtual Annual Conference Content Access, Virtual, 26–29 July 2021. [Google Scholar]
- Hur, B.; Myles, K.; Adelman, Z.; Kim, S.; Kim, E.J.; Price, K.; Gavlick, J. Low-Cost Raspberry Pi Compute Module 3+ Cluster for Mosquito Research via Capstone Project. In Proceedings of the 2022 ASEE Annual Conference & Exposition, Minneapolis, MN, USA, 26–29 June 2022. [Google Scholar]
- Paaijmans, K.P.; Thomas, M.B. The influence of mosquito resting behaviour and associated microclimate for malaria risk. Malar. J. 2011, 10, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murdock, C.C.; Evans, M.V.; McClanahan, T.D.; Miazgowicz, K.L.; Tesla, B. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Neglected Trop. Dis. 2017, 11, e0005640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leccese, F.; Cagnetti, M.; Trinca, D. A Smart City Application: A Fully Controlled Street Lighting Isle Based on Raspberry-Pi Card, a ZigBee Sensor Network and WiMAX. MDPI Sens. 2014, 14, 24408–24424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrož, M. Raspberry Pi as a low-cost data acquisition system for human powered vehicles. Measurement 2017, 100, 7–18. [Google Scholar] [CrossRef]
- Scuro, C.; Sciammarella, P.F.; Lamonaca, F.; Olivito, R.S.; Carni, D.L. IoT for structural health monitoring. IEEE Instrum. Meas. Mag. 2018, 21, 4–14. [Google Scholar] [CrossRef]
- Polineni, S.; Shastri, O.; Bagchi, A.; Gnanakumar, G.; Rasamsetti, S.; Sundaravadivel, P. MOSQUITO EDGE: An Edge-Intelligent Real-Time Mosquito Threat Prediction Using an IoT-Enabled Hardware System. MDPI Sens. 2022, 22, 695. [Google Scholar] [CrossRef] [PubMed]
- Javed, A. Container-Based IoT Sensor Node on Raspberry Pi and the Kubernetes Cluster Framework. Master’s Thesis, Aalto University, Espoo, Finland, 24 August 2016. [Google Scholar]
- MicroK8s Documentation-Home. Available online: https://microk8s.io/docs (accessed on 1 October 2022).
- Kang, B.; Jeong, J.; Choo, H. Docker Swarm and Kubernetes Containers for Smart Home Gateway. IT Prof. 2021, 23, 75–80. [Google Scholar] [CrossRef]
- Debauche, O.; Mahmoudi, S.; Guttadauria, A. A New Edge Computing Architecture for IoT and Multimedia Data Management. Information 2022, 13, 89. [Google Scholar] [CrossRef]
- Rautmare, S. MySQL and NoSQL database comparison for IoT application. In Proceedings of the 2016 IEEE International Conference on Advances in Computer Applications (ICACA), Coimbatore, India, 24 October 2016; pp. 235–238. [Google Scholar]
- Tongkaw, S.; Tongkaw, A. A comparison of database performance of MariaDB and MySQL with OLTP workload. In Proceedings of the 2016 IEEE Conference on Open Systems (ICOS), Langkawi, Malaysia, 10–12 October 2016; pp. 117–119. [Google Scholar]
- College Station, TX Weather History. Available online: https://www.wunderground.com/history/daily/us/tx/college-station/KCLL/date/2022-8-29 (accessed on 31 August 2022).
- Houston, TX Weather History. Available online: https://www.wunderground.com/history/daily/us/tx/houston/KHOU/date/2022-8-29 (accessed on 31 August 2022).
Microclimate | Average Percentage Error | Maximum Percentage Error | Minimum Percentage Error |
---|---|---|---|
College Station’s Ambient Temperature | 5.32% | 7.67% | 2.70% |
Houston’s Ambient Temperature | 14.28% | 24.77% | 5.49% |
College Station’s Humidity | 11.48% | 17.86% | 0.07% |
Houston’s Humidity | 21.69% | 43.74% | 0.12% |
Date | Station 102 in College Station | Weather Underground | ||||
---|---|---|---|---|---|---|
Temperature (°C) | Humidity (%) | Temperature (°C) | Humidity (%) | |||
Average | Std. Dev. | Average | Std. Dev. | Average | Average | |
9/7/22 | 27.57 | 3.90 | 70.90 | 15.36 | 26.94 | 75.70 |
9/8/22 | 28.32 | 3.52 | 58.94 | 14.76 | 27.53 | 64.60 |
9/9/22 | 28.43 | 1.49 | 58.10 | 4.72 | 27.50 | 61.50 |
9/10/22 | 29.91 | 2.90 | 54.62 | 14.62 | 28.06 | 61.30 |
9/11/22 | 28.97 | 3.02 | 64.32 | 15.53 | 27.94 | 62.30 |
9/12/22 | 27.87 | 3.50 | 50.42 | 11.16 | 26.78 | 55.80 |
9/13/22 | 27.49 | 4.48 | 53.47 | 7.59 | 26.50 | 58.00 |
9/14/22 | 27.23 | 4.63 | 65.61 | 8.20 | 26.33 | 55.30 |
Master Node | Worker Node | Ping Time | |||
---|---|---|---|---|---|
Minimum Time (ms) | Average Time (ms) | Maximum Time (ms) | Standard Deviation (ms) | ||
rpi4b-master-1 | rpi3b-plus-worker-1 | 0.614 | 0.759 | 0.913 | 0.067 |
rpi3b-plus-worker-2 | 0.598 | 0.772 | 0.982 | 0.081 | |
rpi3b-plus-worker-3 | 0.545 | 0.754 | 0.933 | 0.076 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Hur, B.; Myles, K.; Adelman, Z. Development of Raspberry Pi 4 B and 3 B+ Micro-Kubernetes Cluster and IoT System for Mosquito Research Applications. Computation 2022, 10, 221. https://doi.org/10.3390/computation10120221
Pan Z, Hur B, Myles K, Adelman Z. Development of Raspberry Pi 4 B and 3 B+ Micro-Kubernetes Cluster and IoT System for Mosquito Research Applications. Computation. 2022; 10(12):221. https://doi.org/10.3390/computation10120221
Chicago/Turabian StylePan, Zhihao, Byul Hur, Kevin Myles, and Zach Adelman. 2022. "Development of Raspberry Pi 4 B and 3 B+ Micro-Kubernetes Cluster and IoT System for Mosquito Research Applications" Computation 10, no. 12: 221. https://doi.org/10.3390/computation10120221
APA StylePan, Z., Hur, B., Myles, K., & Adelman, Z. (2022). Development of Raspberry Pi 4 B and 3 B+ Micro-Kubernetes Cluster and IoT System for Mosquito Research Applications. Computation, 10(12), 221. https://doi.org/10.3390/computation10120221